Bibliography
- Bourbaki(2007)
Nicolas Bourbaki. 2007. Éléments de mathématique. Algèbre. Chapitre 9 (reprint of the 1959 original ed.). Berlin: Springer.
- Brehmer et al.(2023)
Johann Brehmer, Pim De Haan, Sönke Behrends, and Taco Cohen. 2023. Geometric Algebra Transformers. arXiv preprint arXiv:2305.18415 (2023).
- Carneiro(2019)
Mario Carneiro. 2019. The type theory of Lean. preparation (https://github.com/digama0/lean-type-theory/releases) (2019).
- Chen(2016)
Evan Chen. 2016. An infinitely large napkin.
- Chisolm(2012)
Eric Chisolm. 2012. Geometric Algebra. (2012). http://arxiv.org/abs/1205.5935
- de Moura et al.(2015)
Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover (System Description). In Automated Deduction - CADE-25, Amy P. Felty and Aart Middeldorp (Eds.). Lecture Notes in Computer Science, Vol. 9195. Springer International Publishing, Cham, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26
- Gallier(2008)
Jean Gallier. 2008. Clifford algebras, clifford groups, and a generalization of the quaternions. arXiv preprint arXiv:0805.0311 (2008).
- Garling(2011)
David JH Garling. 2011. Clifford algebras: an introduction. Vol. 78. Cambridge University Press.
- Grinberg(2016)
Darij Grinberg. 2016. The Clifford algebra and the Chevalley map - a computational approach. https://www.cip.ifi.lmu.de/~grinberg/algebra/chevalley.pdf
- Hestenes and Sobczyk(1984)
David Hestenes and Garret Sobczyk. 1984. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Vol. 5. Springer Science & Business Media. https://www.springer.com/gp/book/9789027716736
- Izhakian et al.(2016)
Zur Izhakian, Manfred Knebusch, and Louis Rowen. 2016. Supertropical quadratic forms I. Journal of Pure and Applied Algebra 220, 1 (2016), 61–93. https://doi.org/10.1016/j.jpaa.2015.05.043
- Jadczyk(2019)
Arkadiusz Jadczyk. 2019. Notes on Clifford Algebras. (2019).
- Jadczyk(2023)
Arkadiusz Jadczyk. 2023. On the bundle of Clifford algebras over the space of quadratic forms. Advances in Applied Clifford Algebras 33, 2 (2023), 15.
- Lounesto(2001)
Pertti Lounesto. 2001. Clifford Algebras and Spinors. Vol. 286. Cambridge university press.
- Lundholm and Svensson(2009)
Douglas Lundholm and Lars Svensson. 2009. Clifford algebra, geometric algebra, and applications. arXiv preprint arXiv:0907.5356 (2009).
- Moura and Ullrich(2021)
Leonardo de Moura and Sebastian Ullrich. 2021. The lean 4 theorem prover and programming language. In Automated Deduction–CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings 28. Springer, 625–635.
- Roelfs and De Keninck(2023)
Martin Roelfs and Steven De Keninck. 2023. Graded symmetry groups: plane and simple. Advances in Applied Clifford Algebras 33, 3 (2023), 30.
- Ruhe et al.(2023)
David Ruhe, Johannes Brandstetter, and Patrick Forré. 2023. Clifford group equivariant neural networks. arXiv preprint arXiv:2305.11141 (2023).
- The mathlib Community(2020)
The mathlib Community. 2020. The Lean Mathematical Library. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (New Orleans, LA, USA, 2020-01-20) (CPP 2020). Association for Computing Machinery, 367–381. https://doi.org/10.1145/3372885.3373824
- Ullrich(2023)
Sebastian Andreas Ullrich. 2023. An Extensible Theorem Proving Frontend. Ph. D. Dissertation. Dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), 2023.
- Wieser and Song(2022)
Eric Wieser and Utensil Song. 2022. Formalizing geometric algebra in lean. Advances in Applied Clifford Algebras 32, 3 (2022), 28.