The Blueprint For Formalizing Geometric Algebra in Lean

Bibliography

Bourbaki(2007)

Nicolas Bourbaki. 2007. Éléments de mathématique. Algèbre. Chapitre 9 (reprint of the 1959 original ed.). Berlin: Springer.

Brehmer et al.(2023)

Johann Brehmer, Pim De Haan, Sönke Behrends, and Taco Cohen. 2023. Geometric Algebra Transformers. arXiv preprint arXiv:2305.18415 (2023).

Carneiro(2019)

Mario Carneiro. 2019. The type theory of Lean. preparation (https://github.com/digama0/lean-type-theory/releases) (2019).

Chen(2016)

Evan Chen. 2016. An infinitely large napkin.

Chisolm(2012)

Eric Chisolm. 2012. Geometric Algebra. (2012). http://arxiv.org/abs/1205.5935

de Moura et al.(2015)

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover (System Description). In Automated Deduction - CADE-25, Amy P. Felty and Aart Middeldorp (Eds.). Lecture Notes in Computer Science, Vol. 9195. Springer International Publishing, Cham, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

Gallier(2008)

Jean Gallier. 2008. Clifford algebras, clifford groups, and a generalization of the quaternions. arXiv preprint arXiv:0805.0311 (2008).

Garling(2011)

David JH Garling. 2011. Clifford algebras: an introduction. Vol. 78. Cambridge University Press.

Grinberg(2016)

Darij Grinberg. 2016. The Clifford algebra and the Chevalley map - a computational approach. https://www.cip.ifi.lmu.de/~grinberg/algebra/chevalley.pdf

Hestenes and Sobczyk(1984)

David Hestenes and Garret Sobczyk. 1984. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Vol. 5. Springer Science & Business Media. https://www.springer.com/gp/book/9789027716736

Izhakian et al.(2016)

Zur Izhakian, Manfred Knebusch, and Louis Rowen. 2016. Supertropical quadratic forms I. Journal of Pure and Applied Algebra 220, 1 (2016), 61–93. https://doi.org/10.1016/j.jpaa.2015.05.043

Jadczyk(2019)

Arkadiusz Jadczyk. 2019. Notes on Clifford Algebras. (2019).

Jadczyk(2023)

Arkadiusz Jadczyk. 2023. On the bundle of Clifford algebras over the space of quadratic forms. Advances in Applied Clifford Algebras 33, 2 (2023), 15.

Lounesto(2001)

Pertti Lounesto. 2001. Clifford Algebras and Spinors. Vol. 286. Cambridge university press.

Lundholm and Svensson(2009)

Douglas Lundholm and Lars Svensson. 2009. Clifford algebra, geometric algebra, and applications. arXiv preprint arXiv:0907.5356 (2009).

Moura and Ullrich(2021)

Leonardo de Moura and Sebastian Ullrich. 2021. The lean 4 theorem prover and programming language. In Automated Deduction–CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings 28. Springer, 625–635.

Roelfs and De Keninck(2023)

Martin Roelfs and Steven De Keninck. 2023. Graded symmetry groups: plane and simple. Advances in Applied Clifford Algebras 33, 3 (2023), 30.

Ruhe et al.(2023)

David Ruhe, Johannes Brandstetter, and Patrick Forré. 2023. Clifford group equivariant neural networks. arXiv preprint arXiv:2305.11141 (2023).

The mathlib Community(2020)

The mathlib Community. 2020. The Lean Mathematical Library. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (New Orleans, LA, USA, 2020-01-20) (CPP 2020). Association for Computing Machinery, 367–381. https://doi.org/10.1145/3372885.3373824

Ullrich(2023)

Sebastian Andreas Ullrich. 2023. An Extensible Theorem Proving Frontend. Ph. D. Dissertation. Dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), 2023.

Wieser and Song(2022)

Eric Wieser and Utensil Song. 2022. Formalizing geometric algebra in lean. Advances in Applied Clifford Algebras 32, 3 (2022), 28.