Nilpotent elements in quotient rings #
theorem
Ideal.isRadical_iff_quotient_reduced
{R : Type u_1}
[CommRing R]
(I : Ideal R)
:
Ideal.IsRadical I ↔ IsReduced (R ⧸ I)
theorem
Ideal.IsNilpotent.induction_on
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommRing S]
[Algebra R S]
(I : Ideal S)
(hI : IsNilpotent I)
{P : ⦃S : Type u_2⦄ → [inst : CommRing S] → Ideal S → Prop}
(h₁ : ⦃S : Type u_2⦄ → [inst : CommRing S] → (I : Ideal S) → I ^ 2 = ⊥ → P S inst I)
(h₂ : ⦃S : Type u_2⦄ →
[inst : CommRing S] →
(I J : Ideal S) →
I ≤ J → P S inst I → P (S ⧸ I) (Ideal.Quotient.commRing I) (Ideal.map (Ideal.Quotient.mk I) J) → P S inst J)
:
P S inst✝ I
Let P
be a property on ideals. If P
holds for square-zero ideals, and if
P I → P (J ⧸ I) → P J
, then P
holds for all nilpotent ideals.
theorem
IsNilpotent.isUnit_quotient_mk_iff
{R : Type u_3}
[CommRing R]
{I : Ideal R}
(hI : IsNilpotent I)
{x : R}
:
IsUnit (↑(Ideal.Quotient.mk I) x) ↔ IsUnit x