Documentation

Mathlib.RingTheory.QuotientNilpotent

Nilpotent elements in quotient rings #

theorem Ideal.IsNilpotent.induction_on {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommRing S] [Algebra R S] (I : Ideal S) (hI : IsNilpotent I) {P : S : Type u_2⦄ → [inst : CommRing S] → Ideal SProp} (h₁ : S : Type u_2⦄ → [inst : CommRing S] → (I : Ideal S) → I ^ 2 = P S inst I) (h₂ : S : Type u_2⦄ → [inst : CommRing S] → (I J : Ideal S) → I JP S inst IP (S I) (Ideal.Quotient.commRing I) (Ideal.map (Ideal.Quotient.mk I) J)P S inst J) :
P S inst✝ I

Let P be a property on ideals. If P holds for square-zero ideals, and if P I → P (J ⧸ I) → P J, then P holds for all nilpotent ideals.

theorem IsNilpotent.isUnit_quotient_mk_iff {R : Type u_3} [CommRing R] {I : Ideal R} (hI : IsNilpotent I) {x : R} :