An element is said to be nilpotent if some natural-number-power of it equals zero.
Note that we require only the bare minimum assumptions for the definition to make sense. Even
MonoidWithZero
is too strong since nilpotency is important in the study of rings that are only
power-associative.
Equations
- IsNilpotent x = ∃ n, x ^ n = 0
Instances For
theorem
IsNilpotent.pow
{n : ℕ}
{S : Type u_3}
[MonoidWithZero S]
{x : S}
(hx : IsNilpotent x)
:
IsNilpotent (x ^ Nat.succ n)
theorem
IsNilpotent.pow_of_pos
{n : ℕ}
{S : Type u_3}
[MonoidWithZero S]
{x : S}
(hx : IsNilpotent x)
(hn : n ≠ 0)
:
IsNilpotent (x ^ n)
@[simp]
theorem
IsNilpotent.map
{R : Type u_1}
{S : Type u_2}
[MonoidWithZero R]
[MonoidWithZero S]
{r : R}
{F : Type u_3}
[MonoidWithZeroHomClass F R S]
(hr : IsNilpotent r)
(f : F)
:
IsNilpotent (↑f r)
theorem
Commute.IsNilpotent.add_isUnit
{R : Type u_1}
[Ring R]
{r : R}
{u : Rˣ}
(hnil : IsNilpotent r)
(hru : Commute r ↑u⁻¹)
:
theorem
isReduced_iff
(R : Type u_3)
[Zero R]
[Pow R ℕ]
:
IsReduced R ↔ ∀ (x : R), IsNilpotent x → x = 0
theorem
IsNilpotent.eq_zero
{R : Type u_1}
{x : R}
[Zero R]
[Pow R ℕ]
[IsReduced R]
(h : IsNilpotent x)
:
x = 0
@[simp]
theorem
isNilpotent_iff_eq_zero
{R : Type u_1}
{x : R}
[MonoidWithZero R]
[IsReduced R]
:
IsNilpotent x ↔ x = 0
theorem
isReduced_of_injective
{R : Type u_1}
{S : Type u_2}
[MonoidWithZero R]
[MonoidWithZero S]
{F : Type u_3}
[MonoidWithZeroHomClass F R S]
(f : F)
(hf : Function.Injective ↑f)
[IsReduced S]
:
theorem
RingHom.ker_isRadical_iff_reduced_of_surjective
{R : Type u_1}
{S : Type u_3}
{F : Type u_4}
[CommSemiring R]
[CommRing S]
[RingHomClass F R S]
{f : F}
(hf : Function.Surjective ↑f)
:
Ideal.IsRadical (RingHom.ker f) ↔ IsReduced S
theorem
isRadical_iff_span_singleton
{R : Type u_1}
{y : R}
[CommSemiring R]
:
IsRadical y ↔ Ideal.IsRadical (Ideal.span {y})
theorem
Commute.isNilpotent_add
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(hx : IsNilpotent x)
(hy : IsNilpotent y)
:
IsNilpotent (x + y)
theorem
Commute.isNilpotent_sum
{R : Type u_1}
[Semiring R]
{ι : Type u_3}
{s : Finset ι}
{f : ι → R}
(hnp : ∀ (i : ι), i ∈ s → IsNilpotent (f i))
(h_comm : ∀ (i j : ι), i ∈ s → j ∈ s → Commute (f i) (f j))
:
IsNilpotent (Finset.sum s fun i => f i)
theorem
Commute.isNilpotent_mul_left
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(h : IsNilpotent x)
:
IsNilpotent (x * y)
theorem
Commute.isNilpotent_mul_left_iff
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(hy : y ∈ nonZeroDivisorsLeft R)
:
IsNilpotent (x * y) ↔ IsNilpotent x
theorem
Commute.isNilpotent_mul_right
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(h : IsNilpotent y)
:
IsNilpotent (x * y)
theorem
Commute.isNilpotent_mul_right_iff
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(hx : x ∈ nonZeroDivisorsRight R)
:
IsNilpotent (x * y) ↔ IsNilpotent y
theorem
Commute.isNilpotent_sub
{R : Type u_1}
{x : R}
{y : R}
[Ring R]
(h_comm : Commute x y)
(hx : IsNilpotent x)
(hy : IsNilpotent y)
:
IsNilpotent (x - y)
theorem
isNilpotent_sum
{R : Type u_1}
[CommSemiring R]
{ι : Type u_3}
{s : Finset ι}
{f : ι → R}
(hnp : ∀ (i : ι), i ∈ s → IsNilpotent (f i))
:
IsNilpotent (Finset.sum s fun i => f i)
The nilradical of a commutative semiring is the ideal of nilpotent elements.
Equations
- nilradical R = Ideal.radical 0
Instances For
theorem
nilradical_eq_sInf
(R : Type u_3)
[CommSemiring R]
:
nilradical R = sInf {J | Ideal.IsPrime J}
theorem
nilpotent_iff_mem_prime
{R : Type u_1}
[CommSemiring R]
{x : R}
:
IsNilpotent x ↔ ∀ (J : Ideal R), Ideal.IsPrime J → x ∈ J
theorem
nilradical_le_prime
{R : Type u_1}
[CommSemiring R]
(J : Ideal R)
[H : Ideal.IsPrime J]
:
nilradical R ≤ J
@[simp]
@[simp]
theorem
LinearMap.isNilpotent_mulLeft_iff
(R : Type u_1)
{A : Type v}
[CommSemiring R]
[Semiring A]
[Algebra R A]
(a : A)
:
IsNilpotent (LinearMap.mulLeft R a) ↔ IsNilpotent a
@[simp]
theorem
LinearMap.isNilpotent_mulRight_iff
(R : Type u_1)
{A : Type v}
[CommSemiring R]
[Semiring A]
[Algebra R A]
(a : A)
:
IsNilpotent (LinearMap.mulRight R a) ↔ IsNilpotent a
@[simp]
theorem
LinearMap.isNilpotent_toMatrix_iff
{R : Type u_1}
[CommSemiring R]
{ι : Type u_3}
{M : Type u_4}
[Fintype ι]
[DecidableEq ι]
[AddCommMonoid M]
[Module R M]
(b : Basis ι R M)
(f : M →ₗ[R] M)
:
IsNilpotent (↑(LinearMap.toMatrix b b) f) ↔ IsNilpotent f
theorem
Module.End.IsNilpotent.mapQ
{R : Type u_1}
{M : Type v}
[Ring R]
[AddCommGroup M]
[Module R M]
{f : Module.End R M}
{p : Submodule R M}
(hp : p ≤ Submodule.comap f p)
(hnp : IsNilpotent f)
:
IsNilpotent (Submodule.mapQ p p f hp)