Documentation

Mathlib.RingTheory.Ideal.Quotient

Ideal quotients #

This file defines ideal quotients as a special case of submodule quotients and proves some basic results about these quotients.

See Algebra.RingQuot for quotients of non-commutative rings.

Main definitions #

Main results #

@[reducible]

The quotient R/I of a ring R by an ideal I.

The ideal quotient of I is defined to equal the quotient of I as an R-submodule of R. This definition is marked reducible so that typeclass instances can be shared between Ideal.Quotient I and Submodule.Quotient I.

Equations
  • Ideal.instHasQuotientIdealToSemiringToCommSemiring = Submodule.hasQuotient
instance Ideal.Quotient.one {R : Type u} [CommRing R] (I : Ideal R) :
One (R I)
Equations
def Ideal.Quotient.ringCon {R : Type u} [CommRing R] (I : Ideal R) :

On Ideals, Submodule.quotientRel is a ring congruence.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def Ideal.Quotient.mk {R : Type u} [CommRing R] (I : Ideal R) :
    R →+* R I

    The ring homomorphism from a ring R to a quotient ring R/I.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • Ideal.Quotient.instCoeQuotientIdealToSemiringToCommSemiringInstHasQuotientIdealToSemiringToCommSemiring = { coe := ↑(Ideal.Quotient.mk I) }
      theorem Ideal.Quotient.ringHom_ext {R : Type u} [CommRing R] {I : Ideal R} {S : Type v} [NonAssocSemiring S] ⦃f : R I →+* S ⦃g : R I →+* S (h : RingHom.comp f (Ideal.Quotient.mk I) = RingHom.comp g (Ideal.Quotient.mk I)) :
      f = g

      Two RingHoms from the quotient by an ideal are equal if their compositions with Ideal.Quotient.mk' are equal.

      See note [partially-applied ext lemmas].

      instance Ideal.Quotient.inhabited {R : Type u} [CommRing R] {I : Ideal R} :
      Equations
      theorem Ideal.Quotient.eq {R : Type u} [CommRing R] {I : Ideal R} {x : R} {y : R} :
      ↑(Ideal.Quotient.mk I) x = ↑(Ideal.Quotient.mk I) y x - y I
      @[simp]
      theorem Ideal.Quotient.mk_eq_mk {R : Type u} [CommRing R] {I : Ideal R} (x : R) :
      theorem Ideal.Quotient.eq_zero_iff_mem {R : Type u} [CommRing R] {a : R} {I : Ideal R} :
      ↑(Ideal.Quotient.mk I) a = 0 a I
      theorem Ideal.Quotient.mk_eq_mk_iff_sub_mem {R : Type u} [CommRing R] {I : Ideal R} (x : R) (y : R) :
      ↑(Ideal.Quotient.mk I) x = ↑(Ideal.Quotient.mk I) y x - y I
      theorem Ideal.Quotient.zero_eq_one_iff {R : Type u} [CommRing R] {I : Ideal R} :
      0 = 1 I =
      theorem Ideal.Quotient.nontrivial {R : Type u} [CommRing R] {I : Ideal R} (hI : I ) :
      theorem Ideal.Quotient.quotient_ring_saturate {R : Type u} [CommRing R] (I : Ideal R) (s : Set R) :
      ↑(Ideal.Quotient.mk I) ⁻¹' (↑(Ideal.Quotient.mk I) '' s) = ⋃ (x : { x // x I }), (fun y => x + y) '' s

      If I is an ideal of a commutative ring R, if q : R → R/I is the quotient map, and if s ⊆ R is a subset, then q⁻¹(q(s)) = ⋃ᵢ(i + s), the union running over all i ∈ I.

      theorem Ideal.Quotient.exists_inv {R : Type u} [CommRing R] {I : Ideal R} [hI : Ideal.IsMaximal I] {a : R I} :
      a 0b, a * b = 1
      @[reducible]
      noncomputable def Ideal.Quotient.groupWithZero {R : Type u} [CommRing R] (I : Ideal R) [hI : Ideal.IsMaximal I] :

      The quotient by a maximal ideal is a group with zero. This is a def rather than instance, since users will have computable inverses in some applications.

      See note [reducible non-instances].

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[reducible]
        noncomputable def Ideal.Quotient.field {R : Type u} [CommRing R] (I : Ideal R) [hI : Ideal.IsMaximal I] :
        Field (R I)

        The quotient by a maximal ideal is a field. This is a def rather than instance, since users will have computable inverses (and qsmul, rat_cast) in some applications.

        See note [reducible non-instances].

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem Ideal.Quotient.maximal_of_isField {R : Type u} [CommRing R] (I : Ideal R) (hqf : IsField (R I)) :

          If the quotient by an ideal is a field, then the ideal is maximal.

          The quotient of a ring by an ideal is a field iff the ideal is maximal.

          def Ideal.Quotient.lift {R : Type u} [CommRing R] {S : Type v} [CommRing S] (I : Ideal R) (f : R →+* S) (H : ∀ (a : R), a If a = 0) :
          R I →+* S

          Given a ring homomorphism f : R →+* S sending all elements of an ideal to zero, lift it to the quotient by this ideal.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem Ideal.Quotient.lift_mk {R : Type u} [CommRing R] {a : R} {S : Type v} [CommRing S] (I : Ideal R) (f : R →+* S) (H : ∀ (a : R), a If a = 0) :
            ↑(Ideal.Quotient.lift I f H) (↑(Ideal.Quotient.mk I) a) = f a
            theorem Ideal.Quotient.lift_surjective_of_surjective {R : Type u} [CommRing R] {S : Type v} [CommRing S] (I : Ideal R) {f : R →+* S} (H : ∀ (a : R), a If a = 0) (hf : Function.Surjective f) :
            def Ideal.Quotient.factor {R : Type u} [CommRing R] (S : Ideal R) (T : Ideal R) (H : S T) :
            R S →+* R T

            The ring homomorphism from the quotient by a smaller ideal to the quotient by a larger ideal.

            This is the Ideal.Quotient version of Quot.Factor

            Equations
            Instances For
              @[simp]
              theorem Ideal.Quotient.factor_mk {R : Type u} [CommRing R] (S : Ideal R) (T : Ideal R) (H : S T) (x : R) :
              def Ideal.quotEquivOfEq {R : Type u_1} [CommRing R] {I : Ideal R} {J : Ideal R} (h : I = J) :
              R I ≃+* R J

              Quotienting by equal ideals gives equivalent rings.

              See also Submodule.quotEquivOfEq and Ideal.quotientEquivAlgOfEq.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem Ideal.quotEquivOfEq_mk {R : Type u_1} [CommRing R] {I : Ideal R} {J : Ideal R} (h : I = J) (x : R) :
                @[simp]
                theorem Ideal.quotEquivOfEq_symm {R : Type u_1} [CommRing R] {I : Ideal R} {J : Ideal R} (h : I = J) :
                instance Ideal.modulePi {R : Type u} [CommRing R] (I : Ideal R) (ι : Type v) :
                Module (R I) ((ιR) Ideal.pi I ι)

                R^n/I^n is a R/I-module.

                Equations
                noncomputable def Ideal.piQuotEquiv {R : Type u} [CommRing R] (I : Ideal R) (ι : Type v) :
                ((ιR) Ideal.pi I ι) ≃ₗ[R I] ιR I

                R^n/I^n is isomorphic to (R/I)^n as an R/I-module.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem Ideal.map_pi {R : Type u} [CommRing R] (I : Ideal R) {ι : Type u_1} [Finite ι] {ι' : Type w} (x : ιR) (hi : ∀ (i : ι), x i I) (f : (ιR) →ₗ[R] ι'R) (i : ι') :
                  f x i I

                  If f : R^n → R^m is an R-linear map and I ⊆ R is an ideal, then the image of I^n is contained in I^m.

                  theorem Ideal.exists_sub_one_mem_and_mem {R : Type u} [CommRing R] {ι : Type v} (s : Finset ι) {f : ιIdeal R} (hf : ∀ (i : ι), i s∀ (j : ι), j si jf i f j = ) (i : ι) (his : i s) :
                  r, r - 1 f i ∀ (j : ι), j sj ir f j
                  theorem Ideal.exists_sub_mem {R : Type u} [CommRing R] {ι : Type v} [Finite ι] {f : ιIdeal R} (hf : ∀ (i j : ι), i jf i f j = ) (g : ιR) :
                  r, ∀ (i : ι), r - g i f i
                  def Ideal.quotientInfToPiQuotient {R : Type u} [CommRing R] {ι : Type v} (f : ιIdeal R) :
                  R ⨅ (i : ι), f i →+* (i : ι) → R f i

                  The homomorphism from R/(⋂ i, f i) to ∏ i, (R / f i) featured in the Chinese Remainder Theorem. It is bijective if the ideals f i are comaximal.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem Ideal.quotientInfToPiQuotient_bijective {R : Type u} [CommRing R] {ι : Type v} [Finite ι] {f : ιIdeal R} (hf : ∀ (i j : ι), i jf i f j = ) :
                    noncomputable def Ideal.quotientInfRingEquivPiQuotient {R : Type u} [CommRing R] {ι : Type v} [Finite ι] (f : ιIdeal R) (hf : ∀ (i j : ι), i jf i f j = ) :
                    R ⨅ (i : ι), f i ≃+* ((i : ι) → R f i)

                    Chinese Remainder Theorem. Eisenbud Ex.2.6. Similar to Atiyah-Macdonald 1.10 and Stacks 00DT

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      noncomputable def Ideal.quotientInfEquivQuotientProd {R : Type u} [CommRing R] (I : Ideal R) (J : Ideal R) (coprime : I J = ) :
                      R I J ≃+* (R I) × R J

                      Chinese remainder theorem, specialized to two ideals.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem Ideal.quotientInfEquivQuotientProd_fst {R : Type u} [CommRing R] (I : Ideal R) (J : Ideal R) (coprime : I J = ) (x : R I J) :
                        (↑(Ideal.quotientInfEquivQuotientProd I J coprime) x).fst = ↑(Ideal.Quotient.factor (I J) I (_ : I J I)) x
                        @[simp]
                        theorem Ideal.quotientInfEquivQuotientProd_snd {R : Type u} [CommRing R] (I : Ideal R) (J : Ideal R) (coprime : I J = ) (x : R I J) :
                        (↑(Ideal.quotientInfEquivQuotientProd I J coprime) x).snd = ↑(Ideal.Quotient.factor (I J) J (_ : I J J)) x
                        @[simp]
                        theorem Ideal.fst_comp_quotientInfEquivQuotientProd {R : Type u} [CommRing R] (I : Ideal R) (J : Ideal R) (coprime : I J = ) :
                        @[simp]
                        theorem Ideal.snd_comp_quotientInfEquivQuotientProd {R : Type u} [CommRing R] (I : Ideal R) (J : Ideal R) (coprime : I J = ) :