Documentation

Mathlib.Order.BoundedOrder

⊤ and ⊥, bounded lattices and variants #

This file defines top and bottom elements (greatest and least elements) of a type, the bounded variants of different kinds of lattices, sets up the typeclass hierarchy between them and provides instances for Prop and fun.

Main declarations #

Common lattices #

Top, bottom element #

theorem Top.ext {α : Type u} (x : Top α) (y : Top α) (top : = ) :
x = y
theorem Top.ext_iff {α : Type u} (x : Top α) (y : Top α) :
x = y =
theorem Bot.ext {α : Type u} (x : Bot α) (y : Bot α) (bot : = ) :
x = y
theorem Bot.ext_iff {α : Type u} (x : Bot α) (y : Bot α) :
x = y =

The top (, \top) element

Equations
Instances For

    The bot (, \bot) element

    Equations
    Instances For
      class OrderTop (α : Type u) [LE α] extends Top :
      • top : α
      • le_top : ∀ (a : α), a

        is the greatest element

      An order is an OrderTop if it has a greatest element. We state this using a data mixin, holding the value of and the greatest element constraint.

      Instances
      noncomputable def topOrderOrNoTopOrder (α : Type u_3) [LE α] :

      An order is (noncomputably) either an OrderTop or a NoTopOrder. Use as casesI topOrderOrNoTopOrder α.

      Equations
      Instances For
        @[simp]
        theorem le_top {α : Type u} [LE α] [OrderTop α] {a : α} :
        @[simp]
        theorem isTop_top {α : Type u} [LE α] [OrderTop α] :
        @[simp]
        theorem isMax_top {α : Type u} [Preorder α] [OrderTop α] :
        @[simp]
        theorem not_top_lt {α : Type u} [Preorder α] [OrderTop α] {a : α} :
        theorem ne_top_of_lt {α : Type u} [Preorder α] [OrderTop α] {a : α} {b : α} (h : a < b) :
        theorem LT.lt.ne_top {α : Type u} [Preorder α] [OrderTop α] {a : α} {b : α} (h : a < b) :

        Alias of ne_top_of_lt.

        @[simp]
        theorem isMax_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        @[simp]
        theorem isTop_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem not_isMax_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem not_isTop_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem IsMax.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        IsMax aa =

        Alias of the forward direction of isMax_iff_eq_top.

        theorem IsTop.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        IsTop aa =

        Alias of the forward direction of isTop_iff_eq_top.

        @[simp]
        theorem top_le_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem top_unique {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
        a =
        theorem eq_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem eq_top_mono {α : Type u} [PartialOrder α] [OrderTop α] {a : α} {b : α} (h : a b) (h₂ : a = ) :
        b =
        theorem lt_top_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        @[simp]
        theorem not_lt_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem eq_top_or_lt_top {α : Type u} [PartialOrder α] [OrderTop α] (a : α) :
        a = a <
        theorem Ne.lt_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a ) :
        a <
        theorem Ne.lt_top' {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
        a <
        theorem ne_top_of_le_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} {b : α} (hb : b ) (hab : a b) :
        theorem StrictMono.apply_eq_top_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderTop α] [Preorder β] {f : αβ} {a : α} (hf : StrictMono f) :
        f a = f a =
        theorem StrictAnti.apply_eq_top_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderTop α] [Preorder β] {f : αβ} {a : α} (hf : StrictAnti f) :
        f a = f a =
        theorem StrictMono.maximal_preimage_top {α : Type u} {β : Type v} [LinearOrder α] [Preorder β] [OrderTop β] {f : αβ} (H : StrictMono f) {a : α} (h_top : f a = ) (x : α) :
        x a
        theorem OrderTop.ext_top {α : Type u_3} {hA : PartialOrder α} (A : OrderTop α) {hB : PartialOrder α} (B : OrderTop α) (H : ∀ (x y : α), x y x y) :
        class OrderBot (α : Type u) [LE α] extends Bot :
        • bot : α
        • bot_le : ∀ (a : α), a

          is the least element

        An order is an OrderBot if it has a least element. We state this using a data mixin, holding the value of and the least element constraint.

        Instances
        noncomputable def botOrderOrNoBotOrder (α : Type u_3) [LE α] :

        An order is (noncomputably) either an OrderBot or a NoBotOrder. Use as casesI botOrderOrNoBotOrder α.

        Equations
        Instances For
          @[simp]
          theorem bot_le {α : Type u} [LE α] [OrderBot α] {a : α} :
          @[simp]
          theorem isBot_bot {α : Type u} [LE α] [OrderBot α] :
          instance OrderDual.top (α : Type u) [Bot α] :
          Equations
          instance OrderDual.bot (α : Type u) [Top α] :
          Equations
          instance OrderDual.orderTop (α : Type u) [LE α] [OrderBot α] :
          Equations
          instance OrderDual.orderBot (α : Type u) [LE α] [OrderTop α] :
          Equations
          @[simp]
          theorem OrderDual.ofDual_bot (α : Type u) [Top α] :
          OrderDual.ofDual =
          @[simp]
          theorem OrderDual.ofDual_top (α : Type u) [Bot α] :
          OrderDual.ofDual =
          @[simp]
          theorem OrderDual.toDual_bot (α : Type u) [Bot α] :
          OrderDual.toDual =
          @[simp]
          theorem OrderDual.toDual_top (α : Type u) [Top α] :
          OrderDual.toDual =
          @[simp]
          theorem isMin_bot {α : Type u} [Preorder α] [OrderBot α] :
          @[simp]
          theorem not_lt_bot {α : Type u} [Preorder α] [OrderBot α] {a : α} :
          theorem ne_bot_of_gt {α : Type u} [Preorder α] [OrderBot α] {a : α} {b : α} (h : a < b) :
          theorem LT.lt.ne_bot {α : Type u} [Preorder α] [OrderBot α] {a : α} {b : α} (h : a < b) :

          Alias of ne_bot_of_gt.

          @[simp]
          theorem isMin_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          @[simp]
          theorem isBot_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          theorem not_isMin_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          theorem not_isBot_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          theorem IsMin.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          IsMin aa =

          Alias of the forward direction of isMin_iff_eq_bot.

          theorem IsBot.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          IsBot aa =

          Alias of the forward direction of isBot_iff_eq_bot.

          @[simp]
          theorem le_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          theorem bot_unique {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
          a =
          theorem eq_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          theorem eq_bot_mono {α : Type u} [PartialOrder α] [OrderBot α] {a : α} {b : α} (h : a b) (h₂ : b = ) :
          a =
          theorem bot_lt_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          @[simp]
          theorem not_bot_lt_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
          theorem eq_bot_or_bot_lt {α : Type u} [PartialOrder α] [OrderBot α] (a : α) :
          a = < a
          theorem eq_bot_of_minimal {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : ∀ (b : α), ¬b < a) :
          a =
          theorem Ne.bot_lt {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
          < a
          theorem Ne.bot_lt' {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a) :
          < a
          theorem ne_bot_of_le_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} {b : α} (hb : b ) (hab : b a) :
          theorem StrictMono.apply_eq_bot_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderBot α] [Preorder β] {f : αβ} {a : α} (hf : StrictMono f) :
          f a = f a =
          theorem StrictAnti.apply_eq_bot_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderBot α] [Preorder β] {f : αβ} {a : α} (hf : StrictAnti f) :
          f a = f a =
          theorem StrictMono.minimal_preimage_bot {α : Type u} {β : Type v} [LinearOrder α] [PartialOrder β] [OrderBot β] {f : αβ} (H : StrictMono f) {a : α} (h_bot : f a = ) (x : α) :
          a x
          theorem OrderBot.ext_bot {α : Type u_3} {hA : PartialOrder α} (A : OrderBot α) {hB : PartialOrder α} (B : OrderBot α) (H : ∀ (x y : α), x y x y) :
          theorem top_sup_eq {α : Type u} [SemilatticeSup α] [OrderTop α] {a : α} :
          theorem sup_top_eq {α : Type u} [SemilatticeSup α] [OrderTop α] {a : α} :
          theorem bot_sup_eq {α : Type u} [SemilatticeSup α] [OrderBot α] {a : α} :
          a = a
          theorem sup_bot_eq {α : Type u} [SemilatticeSup α] [OrderBot α] {a : α} :
          a = a
          @[simp]
          theorem sup_eq_bot_iff {α : Type u} [SemilatticeSup α] [OrderBot α] {a : α} {b : α} :
          a b = a = b =
          theorem top_inf_eq {α : Type u} [SemilatticeInf α] [OrderTop α] {a : α} :
          a = a
          theorem inf_top_eq {α : Type u} [SemilatticeInf α] [OrderTop α] {a : α} :
          a = a
          @[simp]
          theorem inf_eq_top_iff {α : Type u} [SemilatticeInf α] [OrderTop α] {a : α} {b : α} :
          a b = a = b =
          theorem bot_inf_eq {α : Type u} [SemilatticeInf α] [OrderBot α] {a : α} :
          theorem inf_bot_eq {α : Type u} [SemilatticeInf α] [OrderBot α] {a : α} :

          Bounded order #

          class BoundedOrder (α : Type u) [LE α] extends OrderTop , OrderBot :

            A bounded order describes an order (≤) with a top and bottom element, denoted and respectively.

            Instances
            Equations

            In this section we prove some properties about monotone and antitone operations on Prop #

            theorem monotone_and {α : Type u} [Preorder α] {p : αProp} {q : αProp} (m_p : Monotone p) (m_q : Monotone q) :
            Monotone fun x => p x q x
            theorem monotone_or {α : Type u} [Preorder α] {p : αProp} {q : αProp} (m_p : Monotone p) (m_q : Monotone q) :
            Monotone fun x => p x q x
            theorem monotone_le {α : Type u} [Preorder α] {x : α} :
            Monotone ((fun x x_1 => x x_1) x)
            theorem monotone_lt {α : Type u} [Preorder α] {x : α} :
            Monotone ((fun x x_1 => x < x_1) x)
            theorem antitone_le {α : Type u} [Preorder α] {x : α} :
            Antitone fun x => x x
            theorem antitone_lt {α : Type u} [Preorder α] {x : α} :
            Antitone fun x => x < x
            theorem Monotone.forall {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Monotone (P x)) :
            Monotone fun y => (x : β) → P x y
            theorem Antitone.forall {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Antitone (P x)) :
            Antitone fun y => (x : β) → P x y
            theorem Monotone.ball {α : Type u} {β : Type v} [Preorder α] {P : βαProp} {s : Set β} (hP : ∀ (x : β), x sMonotone (P x)) :
            Monotone fun y => (x : β) → x sP x y
            theorem Antitone.ball {α : Type u} {β : Type v} [Preorder α] {P : βαProp} {s : Set β} (hP : ∀ (x : β), x sAntitone (P x)) :
            Antitone fun y => (x : β) → x sP x y
            theorem Monotone.exists {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Monotone (P x)) :
            Monotone fun y => x, P x y
            theorem Antitone.exists {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Antitone (P x)) :
            Antitone fun y => x, P x y
            theorem forall_ge_iff {α : Type u} [Preorder α] {P : αProp} {x₀ : α} (hP : Monotone P) :
            ((x : α) → x x₀P x) P x₀
            theorem forall_le_iff {α : Type u} [Preorder α] {P : αProp} {x₀ : α} (hP : Antitone P) :
            ((x : α) → x x₀P x) P x₀
            theorem exists_ge_and_iff_exists {α : Type u} [SemilatticeSup α] {P : αProp} {x₀ : α} (hP : Monotone P) :
            (x, x₀ x P x) x, P x
            theorem exists_le_and_iff_exists {α : Type u} [SemilatticeInf α] {P : αProp} {x₀ : α} (hP : Antitone P) :
            (x, x x₀ P x) x, P x

            Function lattices #

            instance Pi.instBotForAll {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Bot (α' i)] :
            Bot ((i : ι) → α' i)
            Equations
            • Pi.instBotForAll = { bot := fun x => }
            @[simp]
            theorem Pi.bot_apply {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Bot (α' i)] (i : ι) :
            ((i : ι) → α' i) Pi.instBotForAll i =
            theorem Pi.bot_def {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Bot (α' i)] :
            = fun x =>
            instance Pi.instTopForAll {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Top (α' i)] :
            Top ((i : ι) → α' i)
            Equations
            • Pi.instTopForAll = { top := fun x => }
            @[simp]
            theorem Pi.top_apply {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Top (α' i)] (i : ι) :
            ((i : ι) → α' i) Pi.instTopForAll i =
            theorem Pi.top_def {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Top (α' i)] :
            = fun x =>
            instance Pi.orderTop {ι : Type u_3} {α' : ιType u_4} [(i : ι) → LE (α' i)] [(i : ι) → OrderTop (α' i)] :
            OrderTop ((i : ι) → α' i)
            Equations
            instance Pi.orderBot {ι : Type u_3} {α' : ιType u_4} [(i : ι) → LE (α' i)] [(i : ι) → OrderBot (α' i)] :
            OrderBot ((i : ι) → α' i)
            Equations
            instance Pi.boundedOrder {ι : Type u_3} {α' : ιType u_4} [(i : ι) → LE (α' i)] [(i : ι) → BoundedOrder (α' i)] :
            BoundedOrder ((i : ι) → α' i)
            Equations
            theorem eq_bot_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] (hα : = ) (x : α) :
            x =
            theorem eq_top_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] (hα : = ) (x : α) :
            x =
            @[reducible]
            def OrderTop.lift {α : Type u} {β : Type v} [LE α] [Top α] [LE β] [OrderTop β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) :

            Pullback an OrderTop.

            Equations
            Instances For
              @[reducible]
              def OrderBot.lift {α : Type u} {β : Type v} [LE α] [Bot α] [LE β] [OrderBot β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_bot : f = ) :

              Pullback an OrderBot.

              Equations
              Instances For
                @[reducible]
                def BoundedOrder.lift {α : Type u} {β : Type v} [LE α] [Top α] [Bot α] [LE β] [BoundedOrder β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) (map_bot : f = ) :

                Pullback a BoundedOrder.

                Equations
                Instances For

                  Subtype, order dual, product lattices #

                  @[reducible]
                  def Subtype.orderBot {α : Type u} {p : αProp} [LE α] [OrderBot α] (hbot : p ) :
                  OrderBot { x // p x }

                  A subtype remains a -order if the property holds at .

                  Equations
                  Instances For
                    @[reducible]
                    def Subtype.orderTop {α : Type u} {p : αProp} [LE α] [OrderTop α] (htop : p ) :
                    OrderTop { x // p x }

                    A subtype remains a -order if the property holds at .

                    Equations
                    Instances For
                      @[reducible]
                      def Subtype.boundedOrder {α : Type u} {p : αProp} [LE α] [BoundedOrder α] (hbot : p ) (htop : p ) :

                      A subtype remains a bounded order if the property holds at and .

                      Equations
                      Instances For
                        @[simp]
                        theorem Subtype.mk_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
                        { val := , property := hbot } =
                        @[simp]
                        theorem Subtype.mk_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
                        { val := , property := htop } =
                        theorem Subtype.coe_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
                        =
                        theorem Subtype.coe_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
                        =
                        @[simp]
                        theorem Subtype.coe_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : { x // p x }} :
                        x = x =
                        @[simp]
                        theorem Subtype.coe_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : { x // p x }} :
                        x = x =
                        @[simp]
                        theorem Subtype.mk_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : α} (hx : p x) :
                        { val := x, property := hx } = x =
                        @[simp]
                        theorem Subtype.mk_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : α} (hx : p x) :
                        { val := x, property := hx } = x =
                        instance Prod.top (α : Type u) (β : Type v) [Top α] [Top β] :
                        Top (α × β)
                        Equations
                        instance Prod.bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
                        Bot (α × β)
                        Equations
                        theorem Prod.fst_top (α : Type u) (β : Type v) [Top α] [Top β] :
                        .fst =
                        theorem Prod.snd_top (α : Type u) (β : Type v) [Top α] [Top β] :
                        .snd =
                        theorem Prod.fst_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
                        .fst =
                        theorem Prod.snd_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
                        .snd =
                        instance Prod.orderTop (α : Type u) (β : Type v) [LE α] [LE β] [OrderTop α] [OrderTop β] :
                        OrderTop (α × β)
                        Equations
                        instance Prod.orderBot (α : Type u) (β : Type v) [LE α] [LE β] [OrderBot α] [OrderBot β] :
                        OrderBot (α × β)
                        Equations
                        instance Prod.boundedOrder (α : Type u) (β : Type v) [LE α] [LE β] [BoundedOrder α] [BoundedOrder β] :
                        Equations
                        instance ULift.instTopULift {α : Type u} [Top α] :
                        Equations
                        • ULift.instTopULift = { top := { down := } }
                        @[simp]
                        theorem ULift.up_top {α : Type u} [Top α] :
                        { down := } =
                        @[simp]
                        theorem ULift.down_top {α : Type u} [Top α] :
                        .down =
                        instance ULift.instBotULift {α : Type u} [Bot α] :
                        Equations
                        • ULift.instBotULift = { bot := { down := } }
                        @[simp]
                        theorem ULift.up_bot {α : Type u} [Bot α] :
                        { down := } =
                        @[simp]
                        theorem ULift.down_bot {α : Type u} [Bot α] :
                        .down =
                        Equations
                        Equations
                        Equations
                        • ULift.instBoundedOrderULiftInstLEULift = BoundedOrder.mk
                        theorem min_bot_left {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
                        theorem max_top_left {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
                        theorem min_top_left {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
                        min a = a
                        theorem max_bot_left {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
                        max a = a
                        theorem min_top_right {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
                        min a = a
                        theorem max_bot_right {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
                        max a = a
                        theorem min_bot_right {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
                        theorem max_top_right {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
                        @[simp]
                        theorem min_eq_bot {α : Type u} [LinearOrder α] [OrderBot α] {a : α} {b : α} :
                        min a b = a = b =
                        @[simp]
                        theorem max_eq_top {α : Type u} [LinearOrder α] [OrderTop α] {a : α} {b : α} :
                        max a b = a = b =
                        @[simp]
                        theorem max_eq_bot {α : Type u} [LinearOrder α] [OrderBot α] {a : α} {b : α} :
                        max a b = a = b =
                        @[simp]
                        theorem min_eq_top {α : Type u} [LinearOrder α] [OrderTop α] {a : α} {b : α} :
                        min a b = a = b =
                        @[simp]
                        theorem bot_ne_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
                        @[simp]
                        theorem top_ne_bot {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
                        @[simp]
                        theorem bot_lt_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
                        Equations
                        @[simp]
                        @[simp]