Documentation

Mathlib.Algebra.Order.Monoid.Prod

Products of ordered monoids #

theorem Prod.instOrderedAddCommMonoidSum.proof_1 {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] :
∀ (x x_1 : α × β), x x_1∀ (x_2 : α × β), (x_2 + x).fst (x_2 + x_1).fst (x_2 + x).snd (x_2 + x_1).snd
Equations
Equations
theorem Prod.instOrderedAddCancelCommMonoid.proof_1 {M : Type u_1} {N : Type u_2} [OrderedCancelAddCommMonoid M] [OrderedCancelAddCommMonoid N] (a : M × N) (b : M × N) :
a b∀ (c : M × N), c + a c + b
theorem Prod.instOrderedAddCancelCommMonoid.proof_2 {M : Type u_1} {N : Type u_2} [OrderedCancelAddCommMonoid M] [OrderedCancelAddCommMonoid N] :
∀ (x x_1 x_2 : M × N), x + x_1 x + x_2x_1.fst x_2.fst x_1.snd x_2.snd
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
abbrev Prod.instExistsAddOfLESumInstAddInstLESum.match_1 {α : Type u_2} {β : Type u_1} [Add β] :
{a b : α × β} → (motive : (c, b.snd = a.snd + c) → Prop) → ∀ (x : c, b.snd = a.snd + c), (∀ (d : β) (hd : b.snd = a.snd + d), motive (_ : c, b.snd = a.snd + c)) → motive x
Equations
Instances For
    abbrev Prod.instExistsAddOfLESumInstAddInstLESum.match_2 {α : Type u_1} {β : Type u_2} [Add α] :
    {a b : α × β} → (motive : (c, b.fst = a.fst + c) → Prop) → ∀ (x : c, b.fst = a.fst + c), (∀ (c : α) (hc : b.fst = a.fst + c), motive (_ : c, b.fst = a.fst + c)) → motive x
    Equations
    Instances For
      theorem Prod.instExistsAddOfLESumInstAddInstLESum.proof_1 {α : Type u_1} {β : Type u_2} [LE α] [LE β] [Add α] [Add β] [ExistsAddOfLE α] [ExistsAddOfLE β] :
      theorem Prod.instCanonicallyOrderedAddMonoidSum.proof_1 {α : Type u_1} {β : Type u_2} [CanonicallyOrderedAddMonoid α] [CanonicallyOrderedAddMonoid β] (a : α × β) (b : α × β) :
      a b∀ (c : α × β), c + a c + b
      theorem Prod.instCanonicallyOrderedAddMonoidSum.proof_4 {α : Type u_1} {β : Type u_2} [CanonicallyOrderedAddMonoid α] [CanonicallyOrderedAddMonoid β] :
      ∀ {a b : α × β}, a bc, b = a + c
      Equations
      • One or more equations did not get rendered due to their size.
      theorem Prod.instCanonicallyOrderedAddMonoidSum.proof_5 {α : Type u_1} {β : Type u_2} [CanonicallyOrderedAddMonoid α] [CanonicallyOrderedAddMonoid β] :
      ∀ (x x_1 : α × β), x.fst (x + x_1).fst x.snd (x + x_1).snd
      Equations
      • One or more equations did not get rendered due to their size.
      instance Prod.Lex.orderedAddCommMonoid {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid α] [CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1] [OrderedAddCommMonoid β] :
      Equations
      theorem Prod.Lex.orderedAddCommMonoid.proof_1 {α : Type u_2} {β : Type u_1} [OrderedAddCommMonoid α] [CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1] [OrderedAddCommMonoid β] (x : Lex (α × β)) (y : Lex (α × β)) (hxy : x y) (z : Lex (α × β)) :
      z + x z + y
      instance Prod.Lex.orderedCommMonoid {α : Type u_1} {β : Type u_2} [OrderedCommMonoid α] [CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1] [OrderedCommMonoid β] :
      Equations
      theorem Prod.Lex.orderedAddCancelCommMonoid.proof_2 {α : Type u_2} {β : Type u_1} [OrderedCancelAddCommMonoid α] [OrderedCancelAddCommMonoid β] :
      ∀ (x x_1 x_2 : Lex (α × β)), x + x_1 x + x_2x_1 x_2
      Equations
      • One or more equations did not get rendered due to their size.
      theorem Prod.Lex.orderedAddCancelCommMonoid.proof_1 {α : Type u_2} {β : Type u_1} [OrderedCancelAddCommMonoid α] [OrderedCancelAddCommMonoid β] :
      ∀ (x x_1 : Lex (α × β)), x x_1∀ (a : Lex (α × β)), a + x a + x_1
      Equations
      • One or more equations did not get rendered due to their size.
      theorem Prod.Lex.linearOrderedAddCancelCommMonoid.proof_4 {α : Type u_2} {β : Type u_1} [LinearOrderedCancelAddCommMonoid α] [LinearOrderedCancelAddCommMonoid β] (a : Lex (α × β)) (b : Lex (α × β)) :
      min a b = if a b then a else b
      theorem Prod.Lex.linearOrderedAddCancelCommMonoid.proof_2 {α : Type u_2} {β : Type u_1} [LinearOrderedCancelAddCommMonoid α] [LinearOrderedCancelAddCommMonoid β] (a : Lex (α × β)) (b : Lex (α × β)) (c : Lex (α × β)) :
      a + b a + cb c
      theorem Prod.Lex.linearOrderedAddCancelCommMonoid.proof_1 {α : Type u_2} {β : Type u_1} [LinearOrderedCancelAddCommMonoid α] [LinearOrderedCancelAddCommMonoid β] (a : Lex (α × β)) (b : Lex (α × β)) :
      a b∀ (c : Lex (α × β)), c + a c + b
      Equations
      • One or more equations did not get rendered due to their size.
      theorem Prod.Lex.linearOrderedAddCancelCommMonoid.proof_5 {α : Type u_2} {β : Type u_1} [LinearOrderedCancelAddCommMonoid α] [LinearOrderedCancelAddCommMonoid β] (a : Lex (α × β)) (b : Lex (α × β)) :
      max a b = if a b then b else a
      Equations
      • One or more equations did not get rendered due to their size.