Products of ordered monoids #
instance
Prod.instOrderedAddCommMonoidSum
{α : Type u_1}
{β : Type u_2}
[OrderedAddCommMonoid α]
[OrderedAddCommMonoid β]
:
OrderedAddCommMonoid (α × β)
instance
Prod.instOrderedCommMonoidProd
{α : Type u_1}
{β : Type u_2}
[OrderedCommMonoid α]
[OrderedCommMonoid β]
:
OrderedCommMonoid (α × β)
theorem
Prod.instOrderedAddCancelCommMonoid.proof_1
{M : Type u_1}
{N : Type u_2}
[OrderedCancelAddCommMonoid M]
[OrderedCancelAddCommMonoid N]
(a : M × N)
(b : M × N)
:
theorem
Prod.instOrderedAddCancelCommMonoid.proof_2
{M : Type u_1}
{N : Type u_2}
[OrderedCancelAddCommMonoid M]
[OrderedCancelAddCommMonoid N]
:
instance
Prod.instOrderedAddCancelCommMonoid
{M : Type u_3}
{N : Type u_4}
[OrderedCancelAddCommMonoid M]
[OrderedCancelAddCommMonoid N]
:
OrderedCancelAddCommMonoid (M × N)
Equations
- One or more equations did not get rendered due to their size.
instance
Prod.instOrderedCancelCommMonoid
{M : Type u_3}
{N : Type u_4}
[OrderedCancelCommMonoid M]
[OrderedCancelCommMonoid N]
:
OrderedCancelCommMonoid (M × N)
Equations
- One or more equations did not get rendered due to their size.
Equations
- Prod.instExistsAddOfLESumInstAddInstLESum.match_1 motive x h_1 = Exists.casesOn x fun w h => h_1 w h
Instances For
Equations
- Prod.instExistsAddOfLESumInstAddInstLESum.match_2 motive x h_1 = Exists.casesOn x fun w h => h_1 w h
Instances For
theorem
Prod.instExistsAddOfLESumInstAddInstLESum.proof_1
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
[Add α]
[Add β]
[ExistsAddOfLE α]
[ExistsAddOfLE β]
:
ExistsAddOfLE (α × β)
instance
Prod.instExistsAddOfLESumInstAddInstLESum
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
[Add α]
[Add β]
[ExistsAddOfLE α]
[ExistsAddOfLE β]
:
ExistsAddOfLE (α × β)
instance
Prod.instExistsMulOfLEProdInstMulInstLEProd
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
[Mul α]
[Mul β]
[ExistsMulOfLE α]
[ExistsMulOfLE β]
:
ExistsMulOfLE (α × β)
theorem
Prod.instCanonicallyOrderedAddMonoidSum.proof_1
{α : Type u_1}
{β : Type u_2}
[CanonicallyOrderedAddMonoid α]
[CanonicallyOrderedAddMonoid β]
(a : α × β)
(b : α × β)
:
theorem
Prod.instCanonicallyOrderedAddMonoidSum.proof_3
{α : Type u_1}
{β : Type u_2}
[CanonicallyOrderedAddMonoid α]
[CanonicallyOrderedAddMonoid β]
(a : α × β)
:
theorem
Prod.instCanonicallyOrderedAddMonoidSum.proof_4
{α : Type u_1}
{β : Type u_2}
[CanonicallyOrderedAddMonoid α]
[CanonicallyOrderedAddMonoid β]
:
theorem
Prod.instCanonicallyOrderedAddMonoidSum.proof_2
{α : Type u_1}
{β : Type u_2}
[CanonicallyOrderedAddMonoid α]
[CanonicallyOrderedAddMonoid β]
:
ExistsAddOfLE (α × β)
instance
Prod.instCanonicallyOrderedAddMonoidSum
{α : Type u_1}
{β : Type u_2}
[CanonicallyOrderedAddMonoid α]
[CanonicallyOrderedAddMonoid β]
:
CanonicallyOrderedAddMonoid (α × β)
Equations
- One or more equations did not get rendered due to their size.
theorem
Prod.instCanonicallyOrderedAddMonoidSum.proof_5
{α : Type u_1}
{β : Type u_2}
[CanonicallyOrderedAddMonoid α]
[CanonicallyOrderedAddMonoid β]
:
instance
Prod.instCanonicallyOrderedMonoidProd
{α : Type u_1}
{β : Type u_2}
[CanonicallyOrderedMonoid α]
[CanonicallyOrderedMonoid β]
:
CanonicallyOrderedMonoid (α × β)
Equations
- One or more equations did not get rendered due to their size.
instance
Prod.Lex.orderedAddCommMonoid
{α : Type u_1}
{β : Type u_2}
[OrderedAddCommMonoid α]
[CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1]
[OrderedAddCommMonoid β]
:
OrderedAddCommMonoid (Lex (α × β))
theorem
Prod.Lex.orderedAddCommMonoid.proof_1
{α : Type u_2}
{β : Type u_1}
[OrderedAddCommMonoid α]
[CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1]
[OrderedAddCommMonoid β]
(x : Lex (α × β))
(y : Lex (α × β))
(hxy : x ≤ y)
(z : Lex (α × β))
:
instance
Prod.Lex.orderedCommMonoid
{α : Type u_1}
{β : Type u_2}
[OrderedCommMonoid α]
[CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1]
[OrderedCommMonoid β]
:
OrderedCommMonoid (Lex (α × β))
theorem
Prod.Lex.orderedAddCancelCommMonoid.proof_2
{α : Type u_2}
{β : Type u_1}
[OrderedCancelAddCommMonoid α]
[OrderedCancelAddCommMonoid β]
:
instance
Prod.Lex.orderedAddCancelCommMonoid
{α : Type u_1}
{β : Type u_2}
[OrderedCancelAddCommMonoid α]
[OrderedCancelAddCommMonoid β]
:
OrderedCancelAddCommMonoid (Lex (α × β))
Equations
- One or more equations did not get rendered due to their size.
theorem
Prod.Lex.orderedAddCancelCommMonoid.proof_1
{α : Type u_2}
{β : Type u_1}
[OrderedCancelAddCommMonoid α]
[OrderedCancelAddCommMonoid β]
:
instance
Prod.Lex.orderedCancelCommMonoid
{α : Type u_1}
{β : Type u_2}
[OrderedCancelCommMonoid α]
[OrderedCancelCommMonoid β]
:
OrderedCancelCommMonoid (Lex (α × β))
Equations
- One or more equations did not get rendered due to their size.
theorem
Prod.Lex.linearOrderedAddCancelCommMonoid.proof_4
{α : Type u_2}
{β : Type u_1}
[LinearOrderedCancelAddCommMonoid α]
[LinearOrderedCancelAddCommMonoid β]
(a : Lex (α × β))
(b : Lex (α × β))
:
theorem
Prod.Lex.linearOrderedAddCancelCommMonoid.proof_3
{α : Type u_2}
{β : Type u_1}
[LinearOrderedCancelAddCommMonoid α]
[LinearOrderedCancelAddCommMonoid β]
(a : Lex (α × β))
(b : Lex (α × β))
:
theorem
Prod.Lex.linearOrderedAddCancelCommMonoid.proof_6
{α : Type u_2}
{β : Type u_1}
[LinearOrderedCancelAddCommMonoid α]
[LinearOrderedCancelAddCommMonoid β]
(a : Lex (α × β))
(b : Lex (α × β))
:
compare a b = compareOfLessAndEq a b
instance
Prod.Lex.linearOrderedAddCancelCommMonoid
{α : Type u_1}
{β : Type u_2}
[LinearOrderedCancelAddCommMonoid α]
[LinearOrderedCancelAddCommMonoid β]
:
LinearOrderedCancelAddCommMonoid (Lex (α × β))
Equations
- One or more equations did not get rendered due to their size.
theorem
Prod.Lex.linearOrderedAddCancelCommMonoid.proof_5
{α : Type u_2}
{β : Type u_1}
[LinearOrderedCancelAddCommMonoid α]
[LinearOrderedCancelAddCommMonoid β]
(a : Lex (α × β))
(b : Lex (α × β))
:
instance
Prod.Lex.linearOrderedCancelCommMonoid
{α : Type u_1}
{β : Type u_2}
[LinearOrderedCancelCommMonoid α]
[LinearOrderedCancelCommMonoid β]
:
LinearOrderedCancelCommMonoid (Lex (α × β))
Equations
- One or more equations did not get rendered due to their size.