Ordered monoids #
This file provides the definitions of ordered monoids.
- mul : α → α → α
- one : α
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Monoid.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Monoid.npow (n + 1) x = x * Monoid.npow n x
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
Multiplication is monotone in an
OrderedCommMonoid
.
An ordered commutative monoid is a commutative monoid
with a partial order such that a ≤ b → c * a ≤ c * b
(multiplication is monotone)
Instances
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
Addition is monotone in an
OrderedAddCommMonoid
.
An ordered (additive) commutative monoid is a commutative monoid
with a partial order such that a ≤ b → c + a ≤ c + b
(addition is monotone)
Instances
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
- decidableLE : DecidableRel fun x x_1 => x ≤ x_1
- decidableEq : DecidableEq α
- decidableLT : DecidableRel fun x x_1 => x < x_1
- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
Addition is monotone in an
OrderedAddCommMonoid
.
A linearly ordered additive commutative monoid.
Instances
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
- decidableLE : DecidableRel fun x x_1 => x ≤ x_1
- decidableEq : DecidableEq α
- decidableLT : DecidableRel fun x x_1 => x < x_1
- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
- mul : α → α → α
- one : α
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Monoid.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Monoid.npow (n + 1) x = x * Monoid.npow n x
Multiplication is monotone in an
OrderedCommMonoid
.
A linearly ordered commutative monoid.
Instances
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
- decidableLE : DecidableRel fun x x_1 => x ≤ x_1
- decidableEq : DecidableEq α
- decidableLT : DecidableRel fun x x_1 => x < x_1
- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- top : α
In a
LinearOrderedAddCommMonoidWithTop
, the⊤
element is larger than any other element.In a
LinearOrderedAddCommMonoidWithTop
, the⊤
element is invariant under addition.
A linearly ordered commutative monoid with an additively absorbing ⊤
element.
Instances should include number systems with an infinite element adjoined.
Instances
Equations
- LinearOrderedAddCommMonoidWithTop.toOrderTop α = OrderTop.mk (_ : ∀ (x : α), x ≤ ⊤)