Documentation

Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic

Prime spectrum of a commutative ring #

The prime spectrum of a commutative ring is the type of all prime ideals. It is naturally endowed with a topology: the Zariski topology.

(It is also naturally endowed with a sheaf of rings, which is constructed in AlgebraicGeometry.StructureSheaf.)

Main definitions #

Conventions #

We denote subsets of rings with s, s', etc... whereas we denote subsets of prime spectra with t, t', etc...

Inspiration/contributors #

The contents of this file draw inspiration from https://github.com/ramonfmir/lean-scheme which has contributions from Ramon Fernandez Mir, Kevin Buzzard, Kenny Lau, and Chris Hughes (on an earlier repository).

theorem PrimeSpectrum.ext_iff {R : Type u} :
∀ {inst : CommRing R} (x y : PrimeSpectrum R), x = y x.asIdeal = y.asIdeal
theorem PrimeSpectrum.ext {R : Type u} :
∀ {inst : CommRing R} (x y : PrimeSpectrum R), x.asIdeal = y.asIdealx = y
structure PrimeSpectrum (R : Type u) [CommRing R] :

The prime spectrum of a commutative ring R is the type of all prime ideals of R.

It is naturally endowed with a topology (the Zariski topology), and a sheaf of commutative rings (see AlgebraicGeometry.StructureSheaf). It is a fundamental building block in algebraic geometry.

Instances For

    The map from the direct sum of prime spectra to the prime spectrum of a direct product.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The prime spectrum of R × S is in bijection with the disjoint unions of the prime spectrum of R and the prime spectrum of S.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        @[simp]

        The zero locus of a set s of elements of a commutative ring R is the set of all prime ideals of the ring that contain the set s.

        An element f of R can be thought of as a dependent function on the prime spectrum of R. At a point x (a prime ideal) the function (i.e., element) f takes values in the quotient ring R modulo the prime ideal x. In this manner, zeroLocus s is exactly the subset of PrimeSpectrum R where all "functions" in s vanish simultaneously.

        Equations
        Instances For
          @[simp]
          theorem PrimeSpectrum.mem_zeroLocus {R : Type u} [CommRing R] (x : PrimeSpectrum R) (s : Set R) :
          x PrimeSpectrum.zeroLocus s s x.asIdeal

          The vanishing ideal of a set t of points of the prime spectrum of a commutative ring R is the intersection of all the prime ideals in the set t.

          An element f of R can be thought of as a dependent function on the prime spectrum of R. At a point x (a prime ideal) the function (i.e., element) f takes values in the quotient ring R modulo the prime ideal x. In this manner, vanishingIdeal t is exactly the ideal of R consisting of all "functions" that vanish on all of t.

          Equations
          Instances For
            theorem PrimeSpectrum.coe_vanishingIdeal {R : Type u} [CommRing R] (t : Set (PrimeSpectrum R)) :
            ↑(PrimeSpectrum.vanishingIdeal t) = {f | ∀ (x : PrimeSpectrum R), x tf x.asIdeal}
            theorem PrimeSpectrum.mem_vanishingIdeal {R : Type u} [CommRing R] (t : Set (PrimeSpectrum R)) (f : R) :
            f PrimeSpectrum.vanishingIdeal t ∀ (x : PrimeSpectrum R), x tf x.asIdeal

            zeroLocus and vanishingIdeal form a galois connection.

            zeroLocus and vanishingIdeal form a galois connection.

            theorem PrimeSpectrum.zeroLocus_iSup {R : Type u} [CommRing R] {ι : Sort u_1} (I : ιIdeal R) :
            PrimeSpectrum.zeroLocus ↑(⨆ (i : ι), I i) = ⋂ (i : ι), PrimeSpectrum.zeroLocus ↑(I i)
            theorem PrimeSpectrum.zeroLocus_iUnion {R : Type u} [CommRing R] {ι : Sort u_1} (s : ιSet R) :
            PrimeSpectrum.zeroLocus (⋃ (i : ι), s i) = ⋂ (i : ι), PrimeSpectrum.zeroLocus (s i)
            theorem PrimeSpectrum.zeroLocus_bUnion {R : Type u} [CommRing R] (s : Set (Set R)) :
            PrimeSpectrum.zeroLocus (⋃ (s' : Set R) (_ : s' s), s') = ⋂ (s' : Set R) (_ : s' s), PrimeSpectrum.zeroLocus s'
            theorem PrimeSpectrum.vanishingIdeal_iUnion {R : Type u} [CommRing R] {ι : Sort u_1} (t : ιSet (PrimeSpectrum R)) :
            PrimeSpectrum.vanishingIdeal (⋃ (i : ι), t i) = ⨅ (i : ι), PrimeSpectrum.vanishingIdeal (t i)
            @[simp]
            theorem PrimeSpectrum.zeroLocus_pow {R : Type u} [CommRing R] (I : Ideal R) {n : } (hn : 0 < n) :
            @[simp]

            The Zariski topology on the prime spectrum of a commutative ring is defined via the closed sets of the topology: they are exactly those sets that are the zero locus of a subset of the ring.

            Equations
            • One or more equations did not get rendered due to their size.

            The antitone order embedding of closed subsets of Spec R into ideals of R.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The prime spectrum of a commutative ring is a compact topological space.

              Equations
              theorem PrimeSpectrum.preimage_comap_zeroLocus_aux {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (s : Set R) :
              (fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹' PrimeSpectrum.zeroLocus s = PrimeSpectrum.zeroLocus (f '' s)

              The function between prime spectra of commutative rings induced by a ring homomorphism. This function is continuous.

              Equations
              Instances For
                @[simp]
                theorem PrimeSpectrum.comap_asIdeal {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (y : PrimeSpectrum S) :
                (↑(PrimeSpectrum.comap f) y).asIdeal = Ideal.comap f y.asIdeal
                theorem PrimeSpectrum.comap_comp_apply {R : Type u} {S : Type v} [CommRing R] [CommRing S] {S' : Type u_1} [CommRing S'] (f : R →+* S) (g : S →+* S') (x : PrimeSpectrum S') :
                theorem PrimeSpectrum.localization_comap_range {R : Type u} (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (M : Submonoid R) [IsLocalization M S] :
                Set.range ↑(PrimeSpectrum.comap (algebraMap R S)) = {p | Disjoint M p.asIdeal}

                The comap of a surjective ring homomorphism is a closed embedding between the prime spectra.

                basicOpen r is the open subset containing all prime ideals not containing r.

                Equations
                Instances For
                  @[simp]
                  theorem PrimeSpectrum.mem_basicOpen {R : Type u} [CommRing R] (f : R) (x : PrimeSpectrum R) :
                  @[simp]
                  theorem PrimeSpectrum.basicOpen_pow {R : Type u} [CommRing R] (f : R) (n : ) (hn : 0 < n) :

                  The specialization order #

                  We endow PrimeSpectrum R with a partial order, where x ≤ y if and only if y ∈ closure {x}.

                  Equations
                  @[simp]
                  theorem PrimeSpectrum.asIdeal_le_asIdeal {R : Type u} [CommRing R] (x : PrimeSpectrum R) (y : PrimeSpectrum R) :
                  x.asIdeal y.asIdeal x y
                  @[simp]
                  theorem PrimeSpectrum.asIdeal_lt_asIdeal {R : Type u} [CommRing R] (x : PrimeSpectrum R) (y : PrimeSpectrum R) :
                  x.asIdeal < y.asIdeal x < y
                  @[simp]
                  theorem PrimeSpectrum.nhdsOrderEmbedding_apply {R : Type u} [CommRing R] (a : PrimeSpectrum R) :
                  PrimeSpectrum.nhdsOrderEmbedding a = nhds a

                  nhds as an order embedding.

                  Equations
                  Instances For
                    Equations
                    Equations
                    • PrimeSpectrum.instUniquePrimeSpectrumToCommRingToEuclideanDomain = { toInhabited := { default := }, uniq := (_ : ∀ (x : PrimeSpectrum R), x = default) }

                    If x specializes to y, then there is a natural map from the localization of y to the localization of x.

                    Equations
                    Instances For

                      The closed point in the prime spectrum of a local ring.

                      Equations
                      Instances For