Ideals in product rings #
For commutative rings R
and S
and ideals I ≤ R
, J ≤ S
, we define Ideal.prod I J
as the
product I × J
, viewed as an ideal of R × S
. In ideal_prod_eq
we show that every ideal of
R × S
is of this form. Furthermore, we show that every prime ideal of R × S
is of the form
p × S
or R × p
, where p
is a prime ideal.
theorem
Ideal.ideal_prod_eq
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
(I : Ideal (R × S))
:
I = Ideal.prod (Ideal.map (RingHom.fst R S) I) (Ideal.map (RingHom.snd R S) I)
Every ideal of the product ring is of the form I × J
, where I
and J
can be explicitly
given as the image under the projection maps.
@[simp]
theorem
Ideal.map_fst_prod
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
(I : Ideal R)
(J : Ideal S)
:
Ideal.map (RingHom.fst R S) (Ideal.prod I J) = I
@[simp]
theorem
Ideal.map_snd_prod
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
(I : Ideal R)
(J : Ideal S)
:
Ideal.map (RingHom.snd R S) (Ideal.prod I J) = J
@[simp]
theorem
Ideal.map_prodComm_prod
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
(I : Ideal R)
(J : Ideal S)
:
Ideal.map (↑RingEquiv.prodComm) (Ideal.prod I J) = Ideal.prod J I
@[simp]
theorem
Ideal.idealProdEquiv_symm_apply
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
(I : Ideal R)
(J : Ideal S)
:
↑Ideal.idealProdEquiv.symm (I, J) = Ideal.prod I J
theorem
Ideal.isPrime_of_isPrime_prod_top
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
{I : Ideal R}
(h : Ideal.IsPrime (Ideal.prod I ⊤))
:
theorem
Ideal.isPrime_of_isPrime_prod_top'
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
{I : Ideal S}
(h : Ideal.IsPrime (Ideal.prod ⊤ I))
:
theorem
Ideal.isPrime_ideal_prod_top
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
{I : Ideal R}
[h : Ideal.IsPrime I]
:
Ideal.IsPrime (Ideal.prod I ⊤)
theorem
Ideal.isPrime_ideal_prod_top'
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
{I : Ideal S}
[h : Ideal.IsPrime I]
:
Ideal.IsPrime (Ideal.prod ⊤ I)
theorem
Ideal.ideal_prod_prime_aux
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
{I : Ideal R}
{J : Ideal S}
:
Ideal.IsPrime (Ideal.prod I J) → I = ⊤ ∨ J = ⊤
theorem
Ideal.ideal_prod_prime
{R : Type u}
{S : Type v}
[Ring R]
[Ring S]
(I : Ideal (R × S))
:
Ideal.IsPrime I ↔ (∃ p, Ideal.IsPrime p ∧ I = Ideal.prod p ⊤) ∨ ∃ p, Ideal.IsPrime p ∧ I = Ideal.prod ⊤ p
Classification of prime ideals in product rings: the prime ideals of R × S
are precisely the
ideals of the form p × S
or R × p
, where p
is a prime ideal of R
or S
.