Documentation

Mathlib.RingTheory.Nilpotent

Nilpotent elements #

Main definitions #

def IsNilpotent {R : Type u_1} [Zero R] [Pow R ] (x : R) :

An element is said to be nilpotent if some natural-number-power of it equals zero.

Note that we require only the bare minimum assumptions for the definition to make sense. Even MonoidWithZero is too strong since nilpotency is important in the study of rings that are only power-associative.

Equations
Instances For
    theorem IsNilpotent.mk {R : Type u_1} [Zero R] [Pow R ] (x : R) (n : ) (e : x ^ n = 0) :
    @[simp]
    theorem IsNilpotent.neg {R : Type u_1} {x : R} [Ring R] (h : IsNilpotent x) :
    theorem IsNilpotent.pow {n : } {S : Type u_3} [MonoidWithZero S] {x : S} (hx : IsNilpotent x) :
    theorem IsNilpotent.pow_of_pos {n : } {S : Type u_3} [MonoidWithZero S] {x : S} (hx : IsNilpotent x) (hn : n 0) :
    @[simp]
    theorem isNilpotent_neg_iff {R : Type u_1} {x : R} [Ring R] :
    theorem IsNilpotent.map {R : Type u_1} {S : Type u_2} [MonoidWithZero R] [MonoidWithZero S] {r : R} {F : Type u_3} [MonoidWithZeroHomClass F R S] (hr : IsNilpotent r) (f : F) :
    IsNilpotent (f r)
    theorem IsNilpotent.sub_one_isUnit {R : Type u_1} [Ring R] {r : R} (hnil : IsNilpotent r) :
    IsUnit (r - 1)
    theorem Commute.IsNilpotent.add_isUnit {R : Type u_1} [Ring R] {r : R} {u : Rˣ} (hnil : IsNilpotent r) (hru : Commute r u⁻¹) :
    IsUnit (u + r)
    theorem isReduced_iff (R : Type u_3) [Zero R] [Pow R ] :
    IsReduced R ∀ (x : R), IsNilpotent xx = 0
    class IsReduced (R : Type u_3) [Zero R] [Pow R ] :
    • eq_zero : ∀ (x : R), IsNilpotent xx = 0

      A reduced structure has no nonzero nilpotent elements.

    A structure that has zero and pow is reduced if it has no nonzero nilpotent elements.

    Instances
      theorem IsNilpotent.eq_zero {R : Type u_1} {x : R} [Zero R] [Pow R ] [IsReduced R] (h : IsNilpotent x) :
      x = 0
      @[simp]
      theorem isNilpotent_iff_eq_zero {R : Type u_1} {x : R} [MonoidWithZero R] [IsReduced R] :
      theorem isReduced_of_injective {R : Type u_1} {S : Type u_2} [MonoidWithZero R] [MonoidWithZero S] {F : Type u_3} [MonoidWithZeroHomClass F R S] (f : F) (hf : Function.Injective f) [IsReduced S] :
      def IsRadical {R : Type u_1} [Dvd R] [Pow R ] (y : R) :

      An element y in a monoid is radical if for any element x, y divides x whenever it divides a power of x.

      Equations
      Instances For
        theorem isRadical_iff_pow_one_lt {R : Type u_1} {y : R} [MonoidWithZero R] (k : ) (hk : 1 < k) :
        IsRadical y ∀ (x : R), y x ^ ky x
        theorem isReduced_iff_pow_one_lt {R : Type u_1} [MonoidWithZero R] (k : ) (hk : 1 < k) :
        IsReduced R ∀ (x : R), x ^ k = 0x = 0
        theorem Commute.isNilpotent_add {R : Type u_1} {x : R} {y : R} [Semiring R] (h_comm : Commute x y) (hx : IsNilpotent x) (hy : IsNilpotent y) :
        theorem Commute.isNilpotent_sum {R : Type u_1} [Semiring R] {ι : Type u_3} {s : Finset ι} {f : ιR} (hnp : ∀ (i : ι), i sIsNilpotent (f i)) (h_comm : ∀ (i j : ι), i sj sCommute (f i) (f j)) :
        IsNilpotent (Finset.sum s fun i => f i)
        theorem Commute.isNilpotent_mul_left {R : Type u_1} {x : R} {y : R} [Semiring R] (h_comm : Commute x y) (h : IsNilpotent x) :
        theorem Commute.isNilpotent_mul_left_iff {R : Type u_1} {x : R} {y : R} [Semiring R] (h_comm : Commute x y) (hy : y nonZeroDivisorsLeft R) :
        theorem Commute.isNilpotent_mul_right {R : Type u_1} {x : R} {y : R} [Semiring R] (h_comm : Commute x y) (h : IsNilpotent y) :
        theorem Commute.isNilpotent_mul_right_iff {R : Type u_1} {x : R} {y : R} [Semiring R] (h_comm : Commute x y) (hx : x nonZeroDivisorsRight R) :
        theorem Commute.isNilpotent_sub {R : Type u_1} {x : R} {y : R} [Ring R] (h_comm : Commute x y) (hx : IsNilpotent x) (hy : IsNilpotent y) :
        theorem isNilpotent_sum {R : Type u_1} [CommSemiring R] {ι : Type u_3} {s : Finset ι} {f : ιR} (hnp : ∀ (i : ι), i sIsNilpotent (f i)) :
        IsNilpotent (Finset.sum s fun i => f i)
        def nilradical (R : Type u_3) [CommSemiring R] :

        The nilradical of a commutative semiring is the ideal of nilpotent elements.

        Equations
        Instances For
          theorem mem_nilradical {R : Type u_1} [CommSemiring R] {x : R} :
          theorem nilpotent_iff_mem_prime {R : Type u_1} [CommSemiring R] {x : R} :
          IsNilpotent x ∀ (J : Ideal R), Ideal.IsPrime Jx J
          theorem nilradical_le_prime {R : Type u_1} [CommSemiring R] (J : Ideal R) [H : Ideal.IsPrime J] :
          @[simp]
          theorem nilradical_eq_zero (R : Type u_3) [CommSemiring R] [IsReduced R] :
          @[simp]
          theorem LinearMap.isNilpotent_toMatrix_iff {R : Type u_1} [CommSemiring R] {ι : Type u_3} {M : Type u_4} [Fintype ι] [DecidableEq ι] [AddCommMonoid M] [Module R M] (b : Basis ι R M) (f : M →ₗ[R] M) :
          theorem Module.End.IsNilpotent.mapQ {R : Type u_1} {M : Type v} [Ring R] [AddCommGroup M] [Module R M] {f : Module.End R M} {p : Submodule R M} (hp : p Submodule.comap f p) (hnp : IsNilpotent f) :