Documentation

Mathlib.Topology.Maps

Specific classes of maps between topological spaces #

This file introduces the following properties of a map f : X → Y between topological spaces:

(Open and closed maps need not be continuous.)

References #

Tags #

open map, closed map, embedding, quotient map, identification map

theorem inducing_iff {α : Type u_1} {β : Type u_2} [tα : TopologicalSpace α] [tβ : TopologicalSpace β] (f : αβ) :
structure Inducing {α : Type u_1} {β : Type u_2} [tα : TopologicalSpace α] [tβ : TopologicalSpace β] (f : αβ) :

A function f : α → β between topological spaces is inducing if the topology on α is induced by the topology on β through f, meaning that a set s : Set α is open iff it is the preimage under f of some open set t : Set β.

Instances For
    theorem inducing_induced {α : Type u_1} {β : Type u_2} [TopologicalSpace β] (f : αβ) :
    theorem inducing_id {α : Type u_1} [TopologicalSpace α] :
    theorem Inducing.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hg : Inducing g) (hf : Inducing f) :
    theorem inducing_of_inducing_compose {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {f : αβ} {g : βγ} (hf : Continuous f) (hg : Continuous g) (hgf : Inducing (g f)) :
    theorem inducing_iff_nhds {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} :
    Inducing f ∀ (a : α), nhds a = Filter.comap f (nhds (f a))
    theorem Inducing.nhds_eq_comap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) (a : α) :
    nhds a = Filter.comap f (nhds (f a))
    theorem Inducing.nhdsSet_eq_comap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) (s : Set α) :
    theorem Inducing.map_nhds_eq {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) (a : α) :
    theorem Inducing.map_nhds_of_mem {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) (a : α) (h : Set.range f nhds (f a)) :
    Filter.map f (nhds a) = nhds (f a)
    theorem Inducing.mapClusterPt_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) {a : α} {l : Filter α} :
    MapClusterPt (f a) l f ClusterPt a l
    theorem Inducing.image_mem_nhdsWithin {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) {a : α} {s : Set α} (hs : s nhds a) :
    f '' s nhdsWithin (f a) (Set.range f)
    theorem Inducing.tendsto_nhds_iff {β : Type u_2} {γ : Type u_3} [TopologicalSpace β] [TopologicalSpace γ] {ι : Type u_5} {f : ιβ} {g : βγ} {a : Filter ι} {b : β} (hg : Inducing g) :
    Filter.Tendsto f a (nhds b) Filter.Tendsto (g f) a (nhds (g b))
    theorem Inducing.continuousAt_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {f : αβ} {g : βγ} (hg : Inducing g) {x : α} :
    theorem Inducing.continuous_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {f : αβ} {g : βγ} (hg : Inducing g) :
    theorem Inducing.continuousAt_iff' {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {f : αβ} {g : βγ} (hf : Inducing f) {x : α} (h : Set.range f nhds (f x)) :
    theorem Inducing.continuous {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) :
    theorem Inducing.inducing_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {f : αβ} {g : βγ} (hg : Inducing g) :
    theorem Inducing.closure_eq_preimage_closure_image {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) (s : Set α) :
    theorem Inducing.isClosed_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) {s : Set α} :
    IsClosed s t, IsClosed t f ⁻¹' t = s
    theorem Inducing.isClosed_iff' {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) {s : Set α} :
    IsClosed s ∀ (x : α), f x closure (f '' s)x s
    theorem Inducing.isClosed_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (h : Inducing f) (s : Set β) (hs : IsClosed s) :
    theorem Inducing.isOpen_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) {s : Set α} :
    IsOpen s t, IsOpen t f ⁻¹' t = s
    theorem Inducing.setOf_isOpen {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) :
    {s | IsOpen s} = Set.preimage f '' {t | IsOpen t}
    theorem Inducing.dense_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) {s : Set α} :
    Dense s ∀ (x : α), f x closure (f '' s)
    theorem embedding_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) :
    structure Embedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) extends Inducing :

    A function between topological spaces is an embedding if it is injective, and for all s : Set α, s is open iff it is the preimage of an open set.

    Instances For
      theorem Function.Injective.embedding_induced {α : Type u_1} {β : Type u_2} [t : TopologicalSpace β] {f : αβ} (hf : Function.Injective f) :
      theorem Embedding.mk' {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (inj : Function.Injective f) (induced : ∀ (a : α), Filter.comap f (nhds (f a)) = nhds a) :
      theorem Embedding.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hg : Embedding g) (hf : Embedding f) :
      theorem embedding_of_embedding_compose {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {f : αβ} {g : βγ} (hf : Continuous f) (hg : Continuous g) (hgf : Embedding (g f)) :
      theorem Function.LeftInverse.embedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {g : βα} (h : Function.LeftInverse f g) (hf : Continuous f) (hg : Continuous g) :
      theorem Embedding.map_nhds_eq {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Embedding f) (a : α) :
      theorem Embedding.map_nhds_of_mem {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Embedding f) (a : α) (h : Set.range f nhds (f a)) :
      Filter.map f (nhds a) = nhds (f a)
      theorem Embedding.tendsto_nhds_iff {β : Type u_2} {γ : Type u_3} [TopologicalSpace β] [TopologicalSpace γ] {ι : Type u_5} {f : ιβ} {g : βγ} {a : Filter ι} {b : β} (hg : Embedding g) :
      Filter.Tendsto f a (nhds b) Filter.Tendsto (g f) a (nhds (g b))
      theorem Embedding.continuous_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {f : αβ} {g : βγ} (hg : Embedding g) :
      theorem Embedding.continuous {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Embedding f) :
      theorem Embedding.closure_eq_preimage_closure_image {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {e : αβ} (he : Embedding e) (s : Set α) :
      theorem Embedding.discreteTopology {X : Type u_5} {Y : Type u_6} [TopologicalSpace X] [TopologicalSpace Y] [DiscreteTopology Y] {f : XY} (hf : Embedding f) :

      The topology induced under an inclusion f : X → Y from a discrete topological space Y is the discrete topology on X.

      See also DiscreteTopology.of_continuous_injective.

      def QuotientMap {α : Type u_5} {β : Type u_6} [tα : TopologicalSpace α] [tβ : TopologicalSpace β] (f : αβ) :

      A function between topological spaces is a quotient map if it is surjective, and for all s : Set β, s is open iff its preimage is an open set.

      Equations
      Instances For
        theorem quotientMap_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} :
        theorem quotientMap_iff_closed {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} :
        theorem QuotientMap.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hg : QuotientMap g) (hf : QuotientMap f) :
        theorem QuotientMap.of_quotientMap_compose {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hf : Continuous f) (hg : Continuous g) (hgf : QuotientMap (g f)) :
        theorem QuotientMap.of_inverse {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {g : βα} (hf : Continuous f) (hg : Continuous g) (h : Function.LeftInverse g f) :
        theorem QuotientMap.continuous_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hf : QuotientMap f) :
        theorem QuotientMap.continuous {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : QuotientMap f) :
        theorem QuotientMap.surjective {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : QuotientMap f) :
        theorem QuotientMap.isOpen_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : QuotientMap f) {s : Set β} :
        theorem QuotientMap.isClosed_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : QuotientMap f) {s : Set β} :
        def IsOpenMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) :

        A map f : α → β is said to be an open map, if the image of any open U : Set α is open in β.

        Equations
        Instances For
          theorem IsOpenMap.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hg : IsOpenMap g) (hf : IsOpenMap f) :
          theorem IsOpenMap.isOpen_range {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) :
          theorem IsOpenMap.image_mem_nhds {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) {x : α} {s : Set α} (hx : s nhds x) :
          f '' s nhds (f x)
          theorem IsOpenMap.range_mem_nhds {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) (x : α) :
          theorem IsOpenMap.mapsTo_interior {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) {s : Set α} {t : Set β} (h : Set.MapsTo f s t) :
          theorem IsOpenMap.image_interior_subset {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) (s : Set α) :
          theorem IsOpenMap.nhds_le {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) (a : α) :
          nhds (f a) Filter.map f (nhds a)
          theorem IsOpenMap.of_nhds_le {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : ∀ (a : α), nhds (f a) Filter.map f (nhds a)) :
          theorem IsOpenMap.of_sections {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (h : ∀ (x : α), g, ContinuousAt g (f x) g (f x) = x Function.RightInverse g f) :
          theorem IsOpenMap.of_inverse {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {f' : βα} (h : Continuous f') (l_inv : Function.LeftInverse f f') (r_inv : Function.RightInverse f f') :
          theorem IsOpenMap.to_quotientMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (open_map : IsOpenMap f) (cont : Continuous f) (surj : Function.Surjective f) :

          A continuous surjective open map is a quotient map.

          theorem IsOpenMap.interior_preimage_subset_preimage_interior {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) {s : Set β} :
          theorem IsOpenMap.preimage_interior_eq_interior_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf₁ : IsOpenMap f) (hf₂ : Continuous f) (s : Set β) :
          theorem IsOpenMap.preimage_closure_subset_closure_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) {s : Set β} :
          theorem IsOpenMap.preimage_closure_eq_closure_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) (hfc : Continuous f) (s : Set β) :
          theorem IsOpenMap.preimage_frontier_subset_frontier_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) {s : Set β} :
          theorem IsOpenMap.preimage_frontier_eq_frontier_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenMap f) (hfc : Continuous f) (s : Set β) :
          theorem isOpenMap_iff_nhds_le {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} :
          IsOpenMap f ∀ (a : α), nhds (f a) Filter.map f (nhds a)
          theorem isOpenMap_iff_interior {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} :
          IsOpenMap f ∀ (s : Set α), f '' interior s interior (f '' s)
          theorem Inducing.isOpenMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hi : Inducing f) (ho : IsOpen (Set.range f)) :

          An inducing map with an open range is an open map.

          def IsClosedMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) :

          A map f : α → β is said to be a closed map, if the image of any closed U : Set α is closed in β.

          Equations
          Instances For
            theorem IsClosedMap.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hg : IsClosedMap g) (hf : IsClosedMap f) :
            theorem IsClosedMap.closure_image_subset {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsClosedMap f) (s : Set α) :
            closure (f '' s) f '' closure s
            theorem IsClosedMap.of_inverse {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {f' : βα} (h : Continuous f') (l_inv : Function.LeftInverse f f') (r_inv : Function.RightInverse f f') :
            theorem IsClosedMap.of_nonempty {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (h : ∀ (s : Set α), IsClosed sSet.Nonempty sIsClosed (f '' s)) :
            theorem IsClosedMap.closed_range {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsClosedMap f) :
            theorem IsClosedMap.to_quotientMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hcl : IsClosedMap f) (hcont : Continuous f) (hsurj : Function.Surjective f) :
            theorem Inducing.isClosedMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Inducing f) (h : IsClosed (Set.range f)) :
            theorem isClosedMap_iff_closure_image {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} :
            IsClosedMap f ∀ (s : Set α), closure (f '' s) f '' closure s
            theorem isClosedMap_iff_clusterPt {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} :
            IsClosedMap f ∀ (s : Set α) (y : β), MapClusterPt y (Filter.principal s) fx, f x = y ClusterPt x (Filter.principal s)

            A map f : X → Y is closed if and only if for all sets s, any cluster point of f '' s is the image by f of some cluster point of s. If you require this for all filters instead of just principal filters, and also that f is continuous, you get the notion of proper map. See isProperMap_iff_clusterPt.

            theorem IsClosedMap.closure_image_eq_of_continuous {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (f_closed : IsClosedMap f) (f_cont : Continuous f) (s : Set α) :
            closure (f '' s) = f '' closure s
            theorem IsClosedMap.lift'_closure_map_eq {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (f_closed : IsClosedMap f) (f_cont : Continuous f) (F : Filter α) :
            Filter.lift' (Filter.map f F) closure = Filter.map f (Filter.lift' F closure)
            theorem IsClosedMap.mapClusterPt_iff_lift'_closure {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {F : Filter α} {f : αβ} (f_closed : IsClosedMap f) (f_cont : Continuous f) {y : β} :
            theorem openEmbedding_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) :
            structure OpenEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) extends Embedding :

            An open embedding is an embedding with open image.

            Instances For
              theorem OpenEmbedding.isOpenMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : OpenEmbedding f) :
              theorem OpenEmbedding.map_nhds_eq {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : OpenEmbedding f) (a : α) :
              Filter.map f (nhds a) = nhds (f a)
              theorem OpenEmbedding.open_iff_image_open {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : OpenEmbedding f) {s : Set α} :
              theorem OpenEmbedding.tendsto_nhds_iff {β : Type u_2} {γ : Type u_3} [TopologicalSpace β] [TopologicalSpace γ] {ι : Type u_5} {f : ιβ} {g : βγ} {a : Filter ι} {b : β} (hg : OpenEmbedding g) :
              Filter.Tendsto f a (nhds b) Filter.Tendsto (g f) a (nhds (g b))
              theorem OpenEmbedding.tendsto_nhds_iff' {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : OpenEmbedding f) {g : βγ} {l : Filter γ} {a : α} :
              Filter.Tendsto (g f) (nhds a) l Filter.Tendsto g (nhds (f a)) l
              theorem OpenEmbedding.continuous {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : OpenEmbedding f) :
              theorem OpenEmbedding.open_iff_preimage_open {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : OpenEmbedding f) {s : Set β} (hs : s Set.range f) :
              theorem openEmbedding_of_embedding_open {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (h₁ : Embedding f) (h₂ : IsOpenMap f) :
              theorem openEmbedding_of_continuous_injective_open {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (h₁ : Continuous f) (h₂ : Function.Injective f) (h₃ : IsOpenMap f) :
              theorem OpenEmbedding.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hg : OpenEmbedding g) (hf : OpenEmbedding f) :
              theorem OpenEmbedding.isOpenMap_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hg : OpenEmbedding g) :
              theorem OpenEmbedding.of_comp_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : αβ) {g : βγ} (hg : OpenEmbedding g) :
              theorem OpenEmbedding.of_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : αβ) {g : βγ} (hg : OpenEmbedding g) (h : OpenEmbedding (g f)) :
              theorem closedEmbedding_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) :
              structure ClosedEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) extends Embedding :

              A closed embedding is an embedding with closed image.

              Instances For
                theorem ClosedEmbedding.tendsto_nhds_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_5} {g : ια} {a : Filter ι} {b : α} (hf : ClosedEmbedding f) :
                Filter.Tendsto g a (nhds b) Filter.Tendsto (f g) a (nhds (f b))
                theorem ClosedEmbedding.continuous {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : ClosedEmbedding f) :
                theorem ClosedEmbedding.isClosedMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : ClosedEmbedding f) :
                theorem ClosedEmbedding.closed_iff_image_closed {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : ClosedEmbedding f) {s : Set α} :
                theorem ClosedEmbedding.closed_iff_preimage_closed {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : ClosedEmbedding f) {s : Set β} (hs : s Set.range f) :
                theorem closedEmbedding_of_embedding_closed {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (h₁ : Embedding f) (h₂ : IsClosedMap f) :
                theorem closedEmbedding_of_continuous_injective_closed {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (h₁ : Continuous f) (h₂ : Function.Injective f) (h₃ : IsClosedMap f) :
                theorem ClosedEmbedding.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : βγ} {f : αβ} (hg : ClosedEmbedding g) (hf : ClosedEmbedding f) :
                theorem ClosedEmbedding.closure_image_eq {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : ClosedEmbedding f) (s : Set α) :
                closure (f '' s) = f '' closure s