Equations
- Ring.toSubtractionMonoid = inferInstance
theorem
exists_int_sub_pow_prime_dvd
(p : ℕ+)
{A : Type u_1}
[CommRing A]
[IsCyclotomicExtension {p} ℤ A]
[hp : Fact (Nat.Prime ↑p)]
(a : A)
:
∃ m, a ^ ↑p - ↑m ∈ Ideal.span {↑↑p}
instance
aaaa
(p : ℕ+)
(L : Type u)
[Field L]
[CharZero L]
[IsCyclotomicExtension {p} ℚ L]
[Fact (Nat.Prime ↑p)]
:
IsCyclotomicExtension {p} ℤ { x // x ∈ NumberField.ringOfIntegers L }
Equations
def
fltIdeals
(p : ℕ+)
[Fact (Nat.Prime ↑p)]
(x : ℤ)
(y : ℤ)
{η : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
:
η ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) } →
Ideal { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }
The principal ideal generated by x + y ζ^i
for integer x
and y
Equations
- fltIdeals p x y x = Ideal.span {↑x + η * ↑y}
Instances For
theorem
mem_fltIdeals
{p : ℕ+}
[Fact (Nat.Prime ↑p)]
(x : ℤ)
(y : ℤ)
{η : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
(hη : η ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
:
theorem
nth_roots_prim
{p : ℕ+}
[Fact (Nat.Prime ↑p)]
{η : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
(hη : η ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hne1 : η ≠ 1)
:
IsPrimitiveRoot η ↑p
theorem
prim_coe
{p : ℕ+}
(ζ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hζ : IsPrimitiveRoot ζ ↑p)
:
IsPrimitiveRoot ↑ζ ↑p
theorem
zeta_sub_one_dvb_p
{p : ℕ+}
[Fact (Nat.Prime ↑p)]
(ph : 5 ≤ p)
{η : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
(hη : η ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hne1 : η ≠ 1)
:
theorem
one_sub_zeta_prime
{p : ℕ+}
[Fact (Nat.Prime ↑p)]
(ph : 5 ≤ p)
{η : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
(hη : η ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hne1 : η ≠ 1)
:
theorem
diff_of_roots
{p : ℕ+}
[hp : Fact (Nat.Prime ↑p)]
(ph : 5 ≤ p)
{η₁ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
{η₂ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
(hη₁ : η₁ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hη₂ : η₂ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hdiff : η₁ ≠ η₂)
(hwlog : η₁ ≠ 1)
:
theorem
diff_of_roots2
{p : ℕ+}
[Fact (Nat.Prime ↑p)]
(ph : 5 ≤ p)
{η₁ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
{η₂ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
(hη₁ : η₁ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hη₂ : η₂ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hdiff : η₁ ≠ η₂)
(hwlog : η₁ ≠ 1)
:
instance
arg
{p : ℕ+}
:
IsDedekindDomain { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }
Equations
instance
instAddCommGroupSubtypeCyclotomicFieldRatFieldMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommRingToEuclideanDomainInstFieldCyclotomicFieldAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegers
{p : ℕ+}
:
AddCommGroup { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }
Equations
- One or more equations did not get rendered due to their size.
instance
instAddCommMonoidSubtypeCyclotomicFieldRatFieldMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommRingToEuclideanDomainInstFieldCyclotomicFieldAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegers
{p : ℕ+}
:
AddCommMonoid { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }
Equations
- One or more equations did not get rendered due to their size.
theorem
fltIdeals_coprime2_lemma
{p : ℕ+}
[Fact (Nat.Prime ↑p)]
(ph : 5 ≤ p)
{x : ℤ}
{y : ℤ}
{η₁ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
{η₂ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
(hη₁ : η₁ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hη₂ : η₂ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hdiff : η₁ ≠ η₂)
(hp : IsCoprime x y)
(hp2 : ¬↑↑p ∣ x + y)
(hwlog : η₁ ≠ 1)
:
theorem
fltIdeals_coprime2
{p : ℕ+}
[Fact (Nat.Prime ↑p)]
(ph : 5 ≤ p)
{x : ℤ}
{y : ℤ}
{η₁ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
{η₂ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
(hη₁ : η₁ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hη₂ : η₂ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hdiff : η₁ ≠ η₂)
(hp : IsCoprime x y)
(hp2 : ¬↑↑p ∣ x + y)
(hwlog : η₁ ≠ 1)
:
theorem
fltIdeals_coprime
{p : ℕ+}
(hpri : Nat.Prime ↑p)
(p5 : 5 ≤ p)
{x : ℤ}
{y : ℤ}
{z : ℤ}
(H : x ^ ↑p + y ^ ↑p = z ^ ↑p)
{η₁ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
{η₂ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) }}
(hxy : IsCoprime x y)
(hη₁ : η₁ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hη₂ : η₂ ∈ Polynomial.nthRootsFinset ↑p { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
(hdiff : η₁ ≠ η₂)
(caseI : ¬↑↑p ∣ x * y * z)
:
theorem
dvd_last_coeff_cycl_integer
{p : ℕ+}
{L : Type u}
[Field L]
[CharZero L]
[IsCyclotomicExtension {p} ℚ L]
[hp : Fact (Nat.Prime ↑p)]
{ζ : { x // x ∈ NumberField.ringOfIntegers L }}
(hζ : IsPrimitiveRoot ζ ↑p)
{f : Fin ↑p → ℤ}
(hf : ∃ i, f i = 0)
{m : ℤ}
(hdiv : ↑m ∣ Finset.sum Finset.univ fun j => f j • ζ ^ ↑j)
:
theorem
dvd_coeff_cycl_integer
{p : ℕ+}
{L : Type u}
[Field L]
[CharZero L]
[IsCyclotomicExtension {p} ℚ L]
(hp : Nat.Prime ↑p)
{ζ : { x // x ∈ NumberField.ringOfIntegers L }}
(hζ : IsPrimitiveRoot ζ ↑p)
{f : Fin ↑p → ℤ}
(hf : ∃ i, f i = 0)
{m : ℤ}
(hdiv : ↑m ∣ Finset.sum Finset.univ fun j => f j • ζ ^ ↑j)
(j : Fin ↑p)
:
m ∣ f j