Documentation

FltRegular.NumberTheory.Cyclotomic.CyclRat

Equations
  • Ring.toSubtractionMonoid = inferInstance
theorem exists_int_sub_pow_prime_dvd (p : ℕ+) {A : Type u_1} [CommRing A] [IsCyclotomicExtension {p} A] [hp : Fact (Nat.Prime p)] (a : A) :
m, a ^ p - m Ideal.span {p}

The principal ideal generated by x + y ζ^i for integer x and y

Equations
Instances For
    theorem mem_fltIdeals {p : ℕ+} [Fact (Nat.Prime p)] (x : ) (y : ) {η : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} (hη : η Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) :
    x + η * y fltIdeals p x y
    theorem Ideal.le_add {S : Type u_1} [CommRing S] (a : Ideal S) (b : Ideal S) (c : Ideal S) (d : Ideal S) (hab : a b) (hcd : c d) :
    a + c b + d
    theorem not_coprime_not_top {S : Type u_1} [CommRing S] (a : Ideal S) (b : Ideal S) :
    theorem prim_coe {p : ℕ+} (ζ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hζ : IsPrimitiveRoot ζ p) :
    IsPrimitiveRoot ζ p
    theorem zeta_sub_one_dvb_p {p : ℕ+} [Fact (Nat.Prime p)] (ph : 5 p) {η : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} (hη : η Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hne1 : η 1) :
    1 - η p
    theorem one_sub_zeta_prime {p : ℕ+} [Fact (Nat.Prime p)] (ph : 5 p) {η : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} (hη : η Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hne1 : η 1) :
    Prime (1 - η)
    theorem diff_of_roots {p : ℕ+} [hp : Fact (Nat.Prime p)] (ph : 5 p) {η₁ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} {η₂ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} (hη₁ : η₁ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hη₂ : η₂ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hdiff : η₁ η₂) (hwlog : η₁ 1) :
    u, η₁ - η₂ = u * (1 - η₁)
    theorem diff_of_roots2 {p : ℕ+} [Fact (Nat.Prime p)] (ph : 5 p) {η₁ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} {η₂ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} (hη₁ : η₁ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hη₂ : η₂ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hdiff : η₁ η₂) (hwlog : η₁ 1) :
    u, η₂ - η₁ = u * (1 - η₁)
    theorem fltIdeals_coprime2_lemma {p : ℕ+} [Fact (Nat.Prime p)] (ph : 5 p) {x : } {y : } {η₁ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} {η₂ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} (hη₁ : η₁ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hη₂ : η₂ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hdiff : η₁ η₂) (hp : IsCoprime x y) (hp2 : ¬p x + y) (hwlog : η₁ 1) :
    fltIdeals p x y hη₁ fltIdeals p x y hη₂ =
    theorem fltIdeals_coprime2 {p : ℕ+} [Fact (Nat.Prime p)] (ph : 5 p) {x : } {y : } {η₁ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} {η₂ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} (hη₁ : η₁ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hη₂ : η₂ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hdiff : η₁ η₂) (hp : IsCoprime x y) (hp2 : ¬p x + y) (hwlog : η₁ 1) :
    IsCoprime (fltIdeals p x y hη₁) (fltIdeals p x y hη₂)
    theorem aux_lem_flt {p : ℕ+} [Fact (Nat.Prime p)] {x : } {y : } {z : } (H : x ^ p + y ^ p = z ^ p) (caseI : ¬p x * y * z) :
    ¬p x + y
    theorem fltIdeals_coprime {p : ℕ+} (hpri : Nat.Prime p) (p5 : 5 p) {x : } {y : } {z : } (H : x ^ p + y ^ p = z ^ p) {η₁ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} {η₂ : { x // x NumberField.ringOfIntegers (CyclotomicField p ) }} (hxy : IsCoprime x y) (hη₁ : η₁ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hη₂ : η₂ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField p ) }) (hdiff : η₁ η₂) (caseI : ¬p x * y * z) :
    let_fun this := (_ : Fact (Nat.Prime p)); IsCoprime (fltIdeals p x y hη₁) (fltIdeals p x y hη₂)
    theorem dvd_last_coeff_cycl_integer {p : ℕ+} {L : Type u} [Field L] [CharZero L] [IsCyclotomicExtension {p} L] [hp : Fact (Nat.Prime p)] {ζ : { x // x NumberField.ringOfIntegers L }} (hζ : IsPrimitiveRoot ζ p) {f : Fin p} (hf : i, f i = 0) {m : } (hdiv : m Finset.sum Finset.univ fun j => f j ζ ^ j) :
    m f { val := Nat.pred p, isLt := (_ : Nat.pred p < p) }
    theorem dvd_coeff_cycl_integer {p : ℕ+} {L : Type u} [Field L] [CharZero L] [IsCyclotomicExtension {p} L] (hp : Nat.Prime p) {ζ : { x // x NumberField.ringOfIntegers L }} (hζ : IsPrimitiveRoot ζ p) {f : Fin p} (hf : i, f i = 0) {m : } (hdiv : m Finset.sum Finset.univ fun j => f j ζ ^ j) (j : Fin p) :
    m f j