Documentation

FltRegular.NumberTheory.Cyclotomic.GaloisActionOnCyclo

theorem PowerBasis.rat_hom_ext {S : Type u_1} {S' : Type u_2} [CommRing S] [hS : Algebra S] [Ring S'] [hS' : Algebra S'] (pb : PowerBasis S) ⦃f : S →+* S' ⦃g : S →+* S' (h : f pb.gen = g pb.gen) :
f = g
def galConj (K : Type u_1) (p : ℕ+) [Field K] [CharZero K] [IsCyclotomicExtension {p} K] :

complex conjugation as a Galois automorphism

Equations
Instances For
    theorem ZMod.val_neg_one' {n : } :
    0 < nZMod.val (-1) = n - 1
    @[simp]
    theorem galConj_zeta_runity {K : Type u_1} {p : ℕ+} [Field K] [CharZero K] [IsCyclotomicExtension {p} K] {ζ : K} (hζ : IsPrimitiveRoot ζ p) :
    ↑(galConj K p) ζ = ζ⁻¹
    theorem galConj_zeta_runity_pow {K : Type u_1} {p : ℕ+} [Field K] [CharZero K] [IsCyclotomicExtension {p} K] {ζ : K} (hζ : IsPrimitiveRoot ζ p) (n : ) :
    ↑(galConj K p) (ζ ^ n) = ζ⁻¹ ^ n
    theorem conj_norm_one (x : ) (h : Complex.abs x = 1) :
    @[simp]
    theorem embedding_conj {K : Type u_1} {p : ℕ+} [Field K] [CharZero K] [IsCyclotomicExtension {p} K] {ζ : K} (hζ : IsPrimitiveRoot ζ p) (x : K) (φ : K →+* ) :
    ↑(starRingEnd ((fun x => ) x)) (φ x) = φ (↑(galConj K p) x)
    theorem galConj_idempotent {K : Type u_1} {p : ℕ+} [Field K] [CharZero K] [IsCyclotomicExtension {p} K] :
    AlgEquiv.trans (galConj K p) (galConj K p) = AlgEquiv.refl
    theorem gal_map_mem {K : Type u_1} [Field K] [CharZero K] {x : K} (hx : x NumberField.ringOfIntegers K) (σ : K →ₐ[] K) :
    theorem gal_map_mem_subtype {K : Type u_1} [Field K] [CharZero K] (σ : K →ₐ[] K) (x : { x // x NumberField.ringOfIntegers K }) :
    def intGal {K : Type u_1} [Field K] [CharZero K] (σ : K →ₐ[] K) :

    Restriction of σ : K →ₐ[ℚ] K to the ring of integers.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem intGal_apply_coe {K : Type u_1} [Field K] [CharZero K] (σ : K →ₐ[] K) (x : { x // x NumberField.ringOfIntegers K }) :
      ↑(↑(intGal σ) x) = σ x
      def unitsGal {K : Type u_1} [Field K] [CharZero K] (σ : K →ₐ[] K) :

      Restriction of σ : K →ₐ[ℚ] K to the units of the ring of integers.

      Equations
      Instances For

        unit_gal_conj as a bundled hom.

        Equations
        Instances For
          theorem unitGalConj_spec (K : Type u_1) (p : ℕ+) [Field K] [CharZero K] [IsCyclotomicExtension {p} K] (u : { x // x NumberField.ringOfIntegers K }ˣ) :
          ↑(galConj K p) u = ↑(↑(unitGalConj K p) u)
          theorem unit_lemma_val_one {K : Type u_1} (p : ℕ+) [Field K] [CharZero K] [IsCyclotomicExtension {p} K] (u : { x // x NumberField.ringOfIntegers K }ˣ) (φ : K →+* ) :
          Complex.abs (φ (u * (↑(unitGalConj K p) u)⁻¹)) = 1