complex conjugation as a Galois automorphism
Equations
- galConj K p = ↑(MulEquiv.symm (IsCyclotomicExtension.autEquivPow K (_ : Irreducible (Polynomial.cyclotomic ↑p ℚ)))) (-1)
Instances For
theorem
galConj_zeta
{K : Type u_1}
{p : ℕ+}
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
:
↑(galConj K p) (IsCyclotomicExtension.zeta p ℚ K) = (IsCyclotomicExtension.zeta p ℚ K)⁻¹
@[simp]
theorem
galConj_zeta_runity
{K : Type u_1}
{p : ℕ+}
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
{ζ : K}
(hζ : IsPrimitiveRoot ζ ↑p)
:
theorem
galConj_zeta_runity_pow
{K : Type u_1}
{p : ℕ+}
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
{ζ : K}
(hζ : IsPrimitiveRoot ζ ↑p)
(n : ℕ)
:
@[simp]
theorem
embedding_conj
{K : Type u_1}
{p : ℕ+}
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
{ζ : K}
(hζ : IsPrimitiveRoot ζ ↑p)
(x : K)
(φ : K →+* ℂ)
:
↑(starRingEnd ((fun x => ℂ) x)) (↑φ x) = ↑φ (↑(galConj K p) x)
theorem
galConj_idempotent
{K : Type u_1}
{p : ℕ+}
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
:
AlgEquiv.trans (galConj K p) (galConj K p) = AlgEquiv.refl
theorem
gal_map_mem
{K : Type u_1}
[Field K]
[CharZero K]
{x : K}
(hx : x ∈ NumberField.ringOfIntegers K)
(σ : K →ₐ[ℚ] K)
:
↑σ x ∈ NumberField.ringOfIntegers K
theorem
gal_map_mem_subtype
{K : Type u_1}
[Field K]
[CharZero K]
(σ : K →ₐ[ℚ] K)
(x : { x // x ∈ NumberField.ringOfIntegers K })
:
↑σ ↑x ∈ NumberField.ringOfIntegers K
def
unitGalConj
(K : Type u_1)
(p : ℕ+)
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
:
{ x // x ∈ NumberField.ringOfIntegers K }ˣ →* { x // x ∈ NumberField.ringOfIntegers K }ˣ
unit_gal_conj
as a bundled hom.
Equations
- unitGalConj K p = unitsGal ↑(galConj K p)
Instances For
theorem
unitGalConj_spec
(K : Type u_1)
(p : ℕ+)
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
(u : { x // x ∈ NumberField.ringOfIntegers K }ˣ)
:
↑(galConj K p) ↑↑u = ↑↑(↑(unitGalConj K p) u)
theorem
unit_lemma_val_one
{K : Type u_1}
(p : ℕ+)
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
(u : { x // x ∈ NumberField.ringOfIntegers K }ˣ)
(φ : K →+* ℂ)
:
↑Complex.abs (↑φ (↑↑u * ↑↑(↑(unitGalConj K p) u)⁻¹)) = 1