Dedekind domains and ideals #
In this file, we show a ring is a Dedekind domain iff all fractional ideals are invertible. Then we prove some results on the unique factorization monoid structure of the ideals.
Main definitions #
IsDedekindDomainInv
alternatively defines a Dedekind domain as an integral domain where every nonzero fractional ideal is invertible.isDedekindDomainInv_iff
shows that this does note depend on the choice of field of fractions.IsDedekindDomain.HeightOneSpectrum
defines the type of nonzero prime ideals ofR
.
Main results: #
Implementation notes #
The definitions that involve a field of fractions choose a canonical field of fractions,
but are independent of that choice. The ..._iff
lemmas express this independence.
Often, definitions assume that Dedekind domains are not fields. We found it more practical
to add a (h : ¬ IsField A)
assumption whenever this is explicitly needed.
References #
- [D. Marcus, Number Fields][marcus1977number]
- [J.W.S. Cassels, A. Frölich, Algebraic Number Theory][cassels1967algebraic]
- [J. Neukirch, Algebraic Number Theory][Neukirch1992]
Tags #
dedekind domain, dedekind ring
Equations
I⁻¹
is the inverse of I
if I
has an inverse.
A Dedekind domain is an integral domain such that every fractional ideal has an inverse.
This is equivalent to IsDedekindDomain
.
In particular we provide a fractional_ideal.comm_group_with_zero
instance,
assuming IsDedekindDomain A
, which implies IsDedekindDomainInv
. For integral ideals,
IsDedekindDomain
(_inv
) implies only Ideal.cancelCommMonoidWithZero
.
Equations
- IsDedekindDomainInv A = ∀ (I : FractionalIdeal (nonZeroDivisors A) (FractionRing A)), I ≠ ⊥ → I * I⁻¹ = 1
Instances For
Showing one side of the equivalence between the definitions
IsDedekindDomainInv
and IsDedekindDomain
of Dedekind domains.
Specialization of exists_primeSpectrum_prod_le_and_ne_bot_of_domain
to Dedekind domains:
Let I : Ideal A
be a nonzero ideal, where A
is a Dedekind domain that is not a field.
Then exists_primeSpectrum_prod_le_and_ne_bot_of_domain
states we can find a product of prime
ideals that is contained within I
. This lemma extends that result by making the product minimal:
let M
be a maximal ideal that contains I
, then the product including M
is contained within I
and the product excluding M
is not contained within I
.
Nonzero integral ideals in a Dedekind domain are invertible.
We will use this to show that nonzero fractional ideals are invertible, and finally conclude that fractional ideals in a Dedekind domain form a group with zero.
Nonzero fractional ideals in a Dedekind domain are units.
This is also available as _root_.mul_inv_cancel
, using the
Semifield
instance defined below.
This is also available as _root_.div_eq_mul_inv
, using the
Semifield
instance defined below.
IsDedekindDomain
and IsDedekindDomainInv
are equivalent ways
to express that an integral domain is a Dedekind domain.
Equations
- One or more equations did not get rendered due to their size.
Fractional ideals have cancellative multiplication in a Dedekind domain.
Although this instance is a direct consequence of the instance
FractionalIdeal.semifield
, we define this instance to provide
a computable alternative.
Equations
- FractionalIdeal.cancelCommMonoidWithZero K = let src := FractionalIdeal.commSemiring; let src := inferInstance; CancelCommMonoidWithZero.mk
Equations
- One or more equations did not get rendered due to their size.
Equations
Equations
- One or more equations did not get rendered due to their size.
Equations
- Ideal.normalizationMonoid = normalizationMonoidOfUniqueUnits
In a Dedekind domain, the (nonzero) prime elements of the monoid with zero Ideal A
are exactly the prime ideals.
In a Dedekind domain, the prime ideals are the zero ideal together with the prime elements
of the monoid with zero Ideal A
.
Strengthening of IsLocalization.exist_integer_multiples
:
Let J ≠ ⊤
be an ideal in a Dedekind domain A
, and f ≠ 0
a finite collection
of elements of K = Frac(A)
, then we can multiply the elements of f
by some a : K
to find a collection of elements of A
that is not completely contained in J
.
GCD and LCM of ideals in a Dedekind domain #
We show that the gcd of two ideals in a Dedekind domain is just their supremum,
and the lcm is their infimum, and use this to instantiate NormalizedGCDMonoid (Ideal A)
.
Ideals in a Dedekind domain have gcd and lcm operators that (trivially) are compatible with the normalization operator.
Equations
- One or more equations did not get rendered due to their size.
Height one spectrum of a Dedekind domain #
If R
is a Dedekind domain of Krull dimension 1, the maximal ideals of R
are exactly its nonzero
prime ideals.
We define HeightOneSpectrum
and provide lemmas to recover the facts that prime ideals of height
one are prime and irreducible.
- asIdeal : Ideal R
- isPrime : Ideal.IsPrime s.asIdeal
The height one prime spectrum of a Dedekind domain R
is the type of nonzero prime ideals of
R
. Note that this equals the maximal spectrum if R
has Krull dimension 1.
Instances For
An equivalence between the height one and maximal spectra for rings of Krull dimension 1.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A Dedekind domain is equal to the intersection of its localizations at all its height one non-zero prime ideals viewed as subalgebras of its field of fractions.
The map from ideals of R
dividing I
to the ideals of A
dividing J
induced by
a homomorphism f : R/I →+* A/J
Equations
- One or more equations did not get rendered due to their size.
Instances For
The bijection between ideals of R
dividing I
and the ideals of A
dividing J
induced by
an isomorphism f : R/I ≅ A/J
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The bijection between the sets of normalized factors of I and J induced by a ring
isomorphism f : R/I ≅ A/J
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The map normalizedFactorsEquivOfQuotEquiv
preserves multiplicities.
The intersection of distinct prime powers in a Dedekind domain is the product of these prime powers.
Chinese remainder theorem for a Dedekind domain: if the ideal I
factors as
∏ i, P i ^ e i
, then R ⧸ I
factors as Π i, R ⧸ (P i ^ e i)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Chinese remainder theorem for a Dedekind domain: R ⧸ I
factors as Π i, R ⧸ (P i ^ e i)
,
where P i
ranges over the prime factors of I
and e i
over the multiplicities.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Chinese remainder theorem, specialized to two ideals.
Equations
- Ideal.quotientMulEquivQuotientProd I J coprime = RingEquiv.trans (Ideal.quotEquivOfEq (_ : I * J = I ⊓ J)) (Ideal.quotientInfEquivQuotientProd I J coprime)
Instances For
Chinese remainder theorem for a Dedekind domain: if the ideal I
factors as
∏ i in s, P i ^ e i
, then R ⧸ I
factors as Π (i : s), R ⧸ (P i ^ e i)
.
This is a version of IsDedekindDomain.quotientEquivPiOfProdEq
where we restrict
the product to a finite subset s
of a potentially infinite indexing type ι
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Corollary of the Chinese remainder theorem: given elements x i : R / P i ^ e i
,
we can choose a representative y : R
such that y ≡ x i (mod P i ^ e i)
.
Corollary of the Chinese remainder theorem: given elements x i : R
,
we can choose a representative y : R
such that y - x i ∈ P i ^ e i
.
The bijection between the (normalized) prime factors of r
and the (normalized) prime factors
of span {r}
Equations
- One or more equations did not get rendered due to their size.
Instances For
The bijection normalizedFactorsEquivSpanNormalizedFactors
between the set of prime
factors of r
and the set of prime factors of the ideal ⟨r⟩
preserves multiplicities.
The bijection normalized_factors_equiv_span_normalized_factors.symm
between the set of prime
factors of the ideal ⟨r⟩
and the set of prime factors of r
preserves multiplicities.