Documentation

Mathlib.NumberTheory.Cyclotomic.Rat

Ring of integers of p ^ n-th cyclotomic fields #

We gather results about cyclotomic extensions of . In particular, we compute the ring of integers of a p ^ n-th cyclotomic extension of .

Main results #

theorem IsCyclotomicExtension.Rat.discr_prime_pow_ne_two' {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [IsCyclotomicExtension {p ^ (k + 1)} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))) (hk : p ^ (k + 1) 2) :
Algebra.discr (IsPrimitiveRoot.subOnePowerBasis ).basis = ↑((-1) ^ (Nat.totient ↑(p ^ (k + 1)) / 2)) * ↑(p ^ (p ^ k * ((p - 1) * (k + 1) - 1)))

The discriminant of the power basis given by ζ - 1.

theorem IsCyclotomicExtension.Rat.discr_odd_prime' {p : ℕ+} {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [IsCyclotomicExtension {p} K] (hζ : IsPrimitiveRoot ζ p) (hodd : p 2) :
Algebra.discr (IsPrimitiveRoot.subOnePowerBasis ).basis = ↑((-1) ^ ((p - 1) / 2)) * ↑(p ^ (p - 2))
theorem IsCyclotomicExtension.Rat.discr_prime_pow' {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) :
Algebra.discr (IsPrimitiveRoot.subOnePowerBasis ).basis = ↑((-1) ^ (Nat.totient ↑(p ^ k) / 2)) * ↑(p ^ (p ^ (k - 1) * ((p - 1) * k - 1)))

The discriminant of the power basis given by ζ - 1. Beware that in the cases p ^ k = 1 and p ^ k = 2 the formula uses 1 / 2 = 0 and 0 - 1 = 0. It is useful only to have a uniform result. See also IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow'.

theorem IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow' {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) :
u n, Algebra.discr (IsPrimitiveRoot.subOnePowerBasis ).basis = u * ↑(p ^ n)

If p is a prime and IsCyclotomicExtension {p ^ k} K L, then there are u : ℤˣ and n : ℕ such that the discriminant of the power basis given by ζ - 1 is u * p ^ n. Often this is enough and less cumbersome to use than IsCyclotomicExtension.Rat.discr_prime_pow'.

theorem IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) :

If K is a p ^ k-th cyclotomic extension of , then (adjoin ℤ {ζ}) is the integral closure of in K.

The integral closure of inside CyclotomicField (p ^ k) ℚ is CyclotomicRing (p ^ k) ℤ ℚ.

@[simp]
theorem IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) (a : { x // x Algebra.adjoin {ζ} }) :
noncomputable def IsPrimitiveRoot.adjoinEquivRingOfIntegers {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) :

The algebra isomorphism adjoin ℤ {ζ} ≃ₐ[ℤ] (𝓞 K), where ζ is a primitive p ^ k-th root of unity and K is a p ^ k-th cyclotomic extension of .

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The ring of integers of a p ^ k-th cyclotomic extension of is a cyclotomic extension.

    Equations
    noncomputable def IsPrimitiveRoot.integralPowerBasis {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) :

    The integral PowerBasis of 𝓞 K given by a primitive root of unity, where K is a p ^ k cyclotomic extension of .

    Equations
    Instances For
      @[simp]
      theorem IsPrimitiveRoot.integralPowerBasis_gen {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) :
      (IsPrimitiveRoot.integralPowerBasis ).gen = { val := ζ, property := (_ : IsIntegral ζ) }
      @[simp]
      theorem IsPrimitiveRoot.integralPowerBasis_dim {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) :
      @[simp]
      theorem IsPrimitiveRoot.adjoinEquivRingOfIntegers'_apply {p : ℕ+} {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p} K] (hζ : IsPrimitiveRoot ζ p) (a : { x // x Algebra.adjoin {ζ} }) :
      noncomputable def IsPrimitiveRoot.adjoinEquivRingOfIntegers' {p : ℕ+} {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p} K] (hζ : IsPrimitiveRoot ζ p) :

      The algebra isomorphism adjoin ℤ {ζ} ≃ₐ[ℤ] (𝓞 K), where ζ is a primitive p-th root of unity and K is a p-th cyclotomic extension of .

      Equations
      Instances For

        The ring of integers of a p-th cyclotomic extension of is a cyclotomic extension.

        Equations
        noncomputable def IsPrimitiveRoot.integralPowerBasis' {p : ℕ+} {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p} K] (hζ : IsPrimitiveRoot ζ p) :

        The integral PowerBasis of 𝓞 K given by a primitive root of unity, where K is a p-th cyclotomic extension of .

        Equations
        Instances For
          @[simp]
          theorem IsPrimitiveRoot.integralPowerBasis'_gen {p : ℕ+} {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p} K] (hζ : IsPrimitiveRoot ζ p) :
          (IsPrimitiveRoot.integralPowerBasis' ).gen = { val := ζ, property := (_ : IsIntegral ζ) }
          @[simp]
          theorem IsPrimitiveRoot.power_basis_int'_dim {p : ℕ+} {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p} K] (hζ : IsPrimitiveRoot ζ p) :
          noncomputable def IsPrimitiveRoot.subOneIntegralPowerBasis {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) :

          The integral PowerBasis of 𝓞 K given by ζ - 1, where K is a p ^ k cyclotomic extension of .

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem IsPrimitiveRoot.subOneIntegralPowerBasis_gen {p : ℕ+} {k : } {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [IsCyclotomicExtension {p ^ k} K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) :
            (IsPrimitiveRoot.subOneIntegralPowerBasis ).gen = { val := ζ - 1, property := (_ : ζ - 1 NumberField.ringOfIntegers K) }
            noncomputable def IsPrimitiveRoot.subOneIntegralPowerBasis' {p : ℕ+} {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p} K] (hζ : IsPrimitiveRoot ζ p) :

            The integral PowerBasis of 𝓞 K given by ζ - 1, where K is a p-th cyclotomic extension of .

            Equations
            Instances For
              @[simp]
              theorem IsPrimitiveRoot.subOneIntegralPowerBasis'_gen {p : ℕ+} {K : Type u} [Field K] [CharZero K] {ζ : K} [hp : Fact (Nat.Prime p)] [hcycl : IsCyclotomicExtension {p} K] (hζ : IsPrimitiveRoot ζ p) :
              (IsPrimitiveRoot.subOneIntegralPowerBasis' ).gen = { val := ζ - 1, property := (_ : ζ - 1 NumberField.ringOfIntegers K) }