Documentation

Mathlib.Order.Filter.AtTopBot

Filter.atTop and Filter.atBot filters on preorded sets, monoids and groups. #

In this file we define the filters

Then we prove many lemmas like “if f → +∞, then f ± c → +∞”.

def Filter.atTop {α : Type u_3} [Preorder α] :

atTop is the filter representing the limit → ∞ on an ordered set. It is generated by the collection of up-sets {b | a ≤ b}. (The preorder need not have a top element for this to be well defined, and indeed is trivial when a top element exists.)

Equations
Instances For
    def Filter.atBot {α : Type u_3} [Preorder α] :

    atBot is the filter representing the limit → -∞ on an ordered set. It is generated by the collection of down-sets {b | b ≤ a}. (The preorder need not have a bottom element for this to be well defined, and indeed is trivial when a bottom element exists.)

    Equations
    Instances For
      theorem Filter.mem_atTop {α : Type u_3} [Preorder α] (a : α) :
      {b | a b} Filter.atTop
      theorem Filter.Ici_mem_atTop {α : Type u_3} [Preorder α] (a : α) :
      Set.Ici a Filter.atTop
      theorem Filter.Ioi_mem_atTop {α : Type u_3} [Preorder α] [NoMaxOrder α] (x : α) :
      Set.Ioi x Filter.atTop
      theorem Filter.mem_atBot {α : Type u_3} [Preorder α] (a : α) :
      {b | b a} Filter.atBot
      theorem Filter.Iic_mem_atBot {α : Type u_3} [Preorder α] (a : α) :
      Set.Iic a Filter.atBot
      theorem Filter.Iio_mem_atBot {α : Type u_3} [Preorder α] [NoMinOrder α] (x : α) :
      Set.Iio x Filter.atBot
      theorem Filter.disjoint_atBot_principal_Ioi {α : Type u_3} [Preorder α] (x : α) :
      Disjoint Filter.atBot (Filter.principal (Set.Ioi x))
      theorem Filter.disjoint_atTop_principal_Iio {α : Type u_3} [Preorder α] (x : α) :
      Disjoint Filter.atTop (Filter.principal (Set.Iio x))
      theorem Filter.disjoint_atTop_principal_Iic {α : Type u_3} [Preorder α] [NoMaxOrder α] (x : α) :
      Disjoint Filter.atTop (Filter.principal (Set.Iic x))
      theorem Filter.disjoint_atBot_principal_Ici {α : Type u_3} [Preorder α] [NoMinOrder α] (x : α) :
      Disjoint Filter.atBot (Filter.principal (Set.Ici x))
      theorem Filter.disjoint_pure_atTop {α : Type u_3} [Preorder α] [NoMaxOrder α] (x : α) :
      Disjoint (pure x) Filter.atTop
      theorem Filter.disjoint_pure_atBot {α : Type u_3} [Preorder α] [NoMinOrder α] (x : α) :
      Disjoint (pure x) Filter.atBot
      theorem Filter.not_tendsto_const_atTop {α : Type u_3} {β : Type u_4} [Preorder α] [NoMaxOrder α] (x : α) (l : Filter β) [Filter.NeBot l] :
      ¬Filter.Tendsto (fun x => x) l Filter.atTop
      theorem Filter.not_tendsto_const_atBot {α : Type u_3} {β : Type u_4} [Preorder α] [NoMinOrder α] (x : α) (l : Filter β) [Filter.NeBot l] :
      ¬Filter.Tendsto (fun x => x) l Filter.atBot
      theorem Filter.disjoint_atBot_atTop {α : Type u_3} [PartialOrder α] [Nontrivial α] :
      Disjoint Filter.atBot Filter.atTop
      theorem Filter.disjoint_atTop_atBot {α : Type u_3} [PartialOrder α] [Nontrivial α] :
      Disjoint Filter.atTop Filter.atBot
      theorem Filter.atTop_basis {α : Type u_3} [Nonempty α] [SemilatticeSup α] :
      Filter.HasBasis Filter.atTop (fun x => True) Set.Ici
      theorem Filter.atTop_eq_generate_Ici {α : Type u_3} [SemilatticeSup α] :
      Filter.atTop = Filter.generate (Set.range Set.Ici)
      theorem Filter.atTop_basis' {α : Type u_3} [SemilatticeSup α] (a : α) :
      Filter.HasBasis Filter.atTop (fun x => a x) Set.Ici
      theorem Filter.atBot_basis {α : Type u_3} [Nonempty α] [SemilatticeInf α] :
      Filter.HasBasis Filter.atBot (fun x => True) Set.Iic
      theorem Filter.atBot_basis' {α : Type u_3} [SemilatticeInf α] (a : α) :
      Filter.HasBasis Filter.atBot (fun x => x a) Set.Iic
      theorem Filter.atTop_neBot {α : Type u_3} [Nonempty α] [SemilatticeSup α] :
      Filter.NeBot Filter.atTop
      theorem Filter.atBot_neBot {α : Type u_3} [Nonempty α] [SemilatticeInf α] :
      Filter.NeBot Filter.atBot
      @[simp]
      theorem Filter.mem_atTop_sets {α : Type u_3} [Nonempty α] [SemilatticeSup α] {s : Set α} :
      s Filter.atTop a, ∀ (b : α), b ab s
      @[simp]
      theorem Filter.mem_atBot_sets {α : Type u_3} [Nonempty α] [SemilatticeInf α] {s : Set α} :
      s Filter.atBot a, ∀ (b : α), b ab s
      @[simp]
      theorem Filter.eventually_atTop {α : Type u_3} [SemilatticeSup α] [Nonempty α] {p : αProp} :
      (∀ᶠ (x : α) in Filter.atTop, p x) a, (b : α) → b ap b
      @[simp]
      theorem Filter.eventually_atBot {α : Type u_3} [SemilatticeInf α] [Nonempty α] {p : αProp} :
      (∀ᶠ (x : α) in Filter.atBot, p x) a, (b : α) → b ap b
      theorem Filter.eventually_ge_atTop {α : Type u_3} [Preorder α] (a : α) :
      ∀ᶠ (x : α) in Filter.atTop, a x
      theorem Filter.eventually_le_atBot {α : Type u_3} [Preorder α] (a : α) :
      ∀ᶠ (x : α) in Filter.atBot, x a
      theorem Filter.eventually_gt_atTop {α : Type u_3} [Preorder α] [NoMaxOrder α] (a : α) :
      ∀ᶠ (x : α) in Filter.atTop, a < x
      theorem Filter.eventually_ne_atTop {α : Type u_3} [Preorder α] [NoMaxOrder α] (a : α) :
      ∀ᶠ (x : α) in Filter.atTop, x a
      theorem Filter.Tendsto.eventually_gt_atTop {α : Type u_3} {β : Type u_4} [Preorder β] [NoMaxOrder β] {f : αβ} {l : Filter α} (hf : Filter.Tendsto f l Filter.atTop) (c : β) :
      ∀ᶠ (x : α) in l, c < f x
      theorem Filter.Tendsto.eventually_ge_atTop {α : Type u_3} {β : Type u_4} [Preorder β] {f : αβ} {l : Filter α} (hf : Filter.Tendsto f l Filter.atTop) (c : β) :
      ∀ᶠ (x : α) in l, c f x
      theorem Filter.Tendsto.eventually_ne_atTop {α : Type u_3} {β : Type u_4} [Preorder β] [NoMaxOrder β] {f : αβ} {l : Filter α} (hf : Filter.Tendsto f l Filter.atTop) (c : β) :
      ∀ᶠ (x : α) in l, f x c
      theorem Filter.Tendsto.eventually_ne_atTop' {α : Type u_3} {β : Type u_4} [Preorder β] [NoMaxOrder β] {f : αβ} {l : Filter α} (hf : Filter.Tendsto f l Filter.atTop) (c : α) :
      ∀ᶠ (x : α) in l, x c
      theorem Filter.eventually_lt_atBot {α : Type u_3} [Preorder α] [NoMinOrder α] (a : α) :
      ∀ᶠ (x : α) in Filter.atBot, x < a
      theorem Filter.eventually_ne_atBot {α : Type u_3} [Preorder α] [NoMinOrder α] (a : α) :
      ∀ᶠ (x : α) in Filter.atBot, x a
      theorem Filter.Tendsto.eventually_lt_atBot {α : Type u_3} {β : Type u_4} [Preorder β] [NoMinOrder β] {f : αβ} {l : Filter α} (hf : Filter.Tendsto f l Filter.atBot) (c : β) :
      ∀ᶠ (x : α) in l, f x < c
      theorem Filter.Tendsto.eventually_le_atBot {α : Type u_3} {β : Type u_4} [Preorder β] {f : αβ} {l : Filter α} (hf : Filter.Tendsto f l Filter.atBot) (c : β) :
      ∀ᶠ (x : α) in l, f x c
      theorem Filter.Tendsto.eventually_ne_atBot {α : Type u_3} {β : Type u_4} [Preorder β] [NoMinOrder β] {f : αβ} {l : Filter α} (hf : Filter.Tendsto f l Filter.atBot) (c : β) :
      ∀ᶠ (x : α) in l, f x c
      theorem Filter.eventually_forall_ge_atTop {α : Type u_3} [Preorder α] {p : αProp} :
      (∀ᶠ (x : α) in Filter.atTop, (y : α) → x yp y) ∀ᶠ (x : α) in Filter.atTop, p x
      theorem Filter.eventually_forall_le_atBot {α : Type u_3} [Preorder α] {p : αProp} :
      (∀ᶠ (x : α) in Filter.atBot, (y : α) → y xp y) ∀ᶠ (x : α) in Filter.atBot, p x
      theorem Filter.Tendsto.eventually_forall_ge_atTop {α : Type u_6} {β : Type u_7} [Preorder β] {l : Filter α} {p : βProp} {f : αβ} (hf : Filter.Tendsto f l Filter.atTop) (h_evtl : ∀ᶠ (x : β) in Filter.atTop, p x) :
      ∀ᶠ (x : α) in l, (y : β) → f x yp y
      theorem Filter.Tendsto.eventually_forall_le_atBot {α : Type u_6} {β : Type u_7} [Preorder β] {l : Filter α} {p : βProp} {f : αβ} (hf : Filter.Tendsto f l Filter.atBot) (h_evtl : ∀ᶠ (x : β) in Filter.atBot, p x) :
      ∀ᶠ (x : α) in l, (y : β) → y f xp y
      theorem Filter.atTop_basis_Ioi {α : Type u_3} [Nonempty α] [SemilatticeSup α] [NoMaxOrder α] :
      Filter.HasBasis Filter.atTop (fun x => True) Set.Ioi
      theorem Filter.atTop_countable_basis {α : Type u_3} [Nonempty α] [SemilatticeSup α] [Countable α] :
      Filter.HasCountableBasis Filter.atTop (fun x => True) Set.Ici
      theorem Filter.atBot_countable_basis {α : Type u_3} [Nonempty α] [SemilatticeInf α] [Countable α] :
      Filter.HasCountableBasis Filter.atBot (fun x => True) Set.Iic
      theorem Filter.OrderTop.atTop_eq (α : Type u_6) [PartialOrder α] [OrderTop α] :
      Filter.atTop = pure
      theorem Filter.OrderBot.atBot_eq (α : Type u_6) [PartialOrder α] [OrderBot α] :
      Filter.atBot = pure
      theorem Filter.Subsingleton.atTop_eq (α : Type u_6) [Subsingleton α] [Preorder α] :
      Filter.atTop =
      theorem Filter.Subsingleton.atBot_eq (α : Type u_6) [Subsingleton α] [Preorder α] :
      Filter.atBot =
      theorem Filter.tendsto_atTop_pure {α : Type u_3} {β : Type u_4} [PartialOrder α] [OrderTop α] (f : αβ) :
      Filter.Tendsto f Filter.atTop (pure (f ))
      theorem Filter.tendsto_atBot_pure {α : Type u_3} {β : Type u_4} [PartialOrder α] [OrderBot α] (f : αβ) :
      Filter.Tendsto f Filter.atBot (pure (f ))
      theorem Filter.Eventually.exists_forall_of_atTop {α : Type u_3} [SemilatticeSup α] [Nonempty α] {p : αProp} (h : ∀ᶠ (x : α) in Filter.atTop, p x) :
      a, (b : α) → b ap b
      theorem Filter.Eventually.exists_forall_of_atBot {α : Type u_3} [SemilatticeInf α] [Nonempty α] {p : αProp} (h : ∀ᶠ (x : α) in Filter.atBot, p x) :
      a, (b : α) → b ap b
      theorem Filter.exists_eventually_atTop {α : Type u_3} {β : Type u_4} [SemilatticeSup α] [Nonempty α] {r : αβProp} :
      (b, ∀ᶠ (a : α) in Filter.atTop, r a b) ∀ᶠ (a₀ : α) in Filter.atTop, b, (a : α) → a a₀r a b
      theorem Filter.exists_eventually_atBot {α : Type u_3} {β : Type u_4} [SemilatticeInf α] [Nonempty α] {r : αβProp} :
      (b, ∀ᶠ (a : α) in Filter.atBot, r a b) ∀ᶠ (a₀ : α) in Filter.atBot, b, (a : α) → a a₀r a b
      theorem Filter.frequently_atTop {α : Type u_3} [SemilatticeSup α] [Nonempty α] {p : αProp} :
      (∃ᶠ (x : α) in Filter.atTop, p x) ∀ (a : α), b, b a p b
      theorem Filter.frequently_atBot {α : Type u_3} [SemilatticeInf α] [Nonempty α] {p : αProp} :
      (∃ᶠ (x : α) in Filter.atBot, p x) ∀ (a : α), b, b a p b
      theorem Filter.frequently_atTop' {α : Type u_3} [SemilatticeSup α] [Nonempty α] [NoMaxOrder α] {p : αProp} :
      (∃ᶠ (x : α) in Filter.atTop, p x) ∀ (a : α), b, b > a p b
      theorem Filter.frequently_atBot' {α : Type u_3} [SemilatticeInf α] [Nonempty α] [NoMinOrder α] {p : αProp} :
      (∃ᶠ (x : α) in Filter.atBot, p x) ∀ (a : α), b, b < a p b
      theorem Filter.Frequently.forall_exists_of_atTop {α : Type u_3} [SemilatticeSup α] [Nonempty α] {p : αProp} (h : ∃ᶠ (x : α) in Filter.atTop, p x) (a : α) :
      b, b a p b
      theorem Filter.Frequently.forall_exists_of_atBot {α : Type u_3} [SemilatticeInf α] [Nonempty α] {p : αProp} (h : ∃ᶠ (x : α) in Filter.atBot, p x) (a : α) :
      b, b a p b
      theorem Filter.map_atTop_eq {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeSup α] {f : αβ} :
      Filter.map f Filter.atTop = ⨅ (a : α), Filter.principal (f '' {a' | a a'})
      theorem Filter.map_atBot_eq {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeInf α] {f : αβ} :
      Filter.map f Filter.atBot = ⨅ (a : α), Filter.principal (f '' {a' | a' a})
      theorem Filter.tendsto_atTop {α : Type u_3} {β : Type u_4} [Preorder β] {m : αβ} {f : Filter α} :
      Filter.Tendsto m f Filter.atTop ∀ (b : β), ∀ᶠ (a : α) in f, b m a
      theorem Filter.tendsto_atBot {α : Type u_3} {β : Type u_4} [Preorder β] {m : αβ} {f : Filter α} :
      Filter.Tendsto m f Filter.atBot ∀ (b : β), ∀ᶠ (a : α) in f, m a b
      theorem Filter.tendsto_atTop_mono' {α : Type u_3} {β : Type u_4} [Preorder β] (l : Filter α) ⦃f₁ : αβ ⦃f₂ : αβ (h : f₁ ≤ᶠ[l] f₂) (h₁ : Filter.Tendsto f₁ l Filter.atTop) :
      Filter.Tendsto f₂ l Filter.atTop
      theorem Filter.tendsto_atBot_mono' {α : Type u_3} {β : Type u_4} [Preorder β] (l : Filter α) ⦃f₁ : αβ ⦃f₂ : αβ (h : f₁ ≤ᶠ[l] f₂) :
      Filter.Tendsto f₂ l Filter.atBotFilter.Tendsto f₁ l Filter.atBot
      theorem Filter.tendsto_atTop_mono {α : Type u_3} {β : Type u_4} [Preorder β] {l : Filter α} {f : αβ} {g : αβ} (h : ∀ (n : α), f n g n) :
      Filter.Tendsto f l Filter.atTopFilter.Tendsto g l Filter.atTop
      theorem Filter.tendsto_atBot_mono {α : Type u_3} {β : Type u_4} [Preorder β] {l : Filter α} {f : αβ} {g : αβ} (h : ∀ (n : α), f n g n) :
      Filter.Tendsto g l Filter.atBotFilter.Tendsto f l Filter.atBot
      theorem Filter.atTop_eq_generate_of_forall_exists_le {α : Type u_3} [LinearOrder α] {s : Set α} (hs : ∀ (x : α), y, y s x y) :
      Filter.atTop = Filter.generate (Set.Ici '' s)
      theorem Filter.atTop_eq_generate_of_not_bddAbove {α : Type u_3} [LinearOrder α] {s : Set α} (hs : ¬BddAbove s) :
      Filter.atTop = Filter.generate (Set.Ici '' s)
      @[simp]
      theorem OrderIso.comap_atTop {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] (e : α ≃o β) :
      Filter.comap (e) Filter.atTop = Filter.atTop
      @[simp]
      theorem OrderIso.comap_atBot {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] (e : α ≃o β) :
      Filter.comap (e) Filter.atBot = Filter.atBot
      @[simp]
      theorem OrderIso.map_atTop {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] (e : α ≃o β) :
      Filter.map (e) Filter.atTop = Filter.atTop
      @[simp]
      theorem OrderIso.map_atBot {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] (e : α ≃o β) :
      Filter.map (e) Filter.atBot = Filter.atBot
      theorem OrderIso.tendsto_atTop {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] (e : α ≃o β) :
      Filter.Tendsto (e) Filter.atTop Filter.atTop
      theorem OrderIso.tendsto_atBot {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] (e : α ≃o β) :
      Filter.Tendsto (e) Filter.atBot Filter.atBot
      @[simp]
      theorem OrderIso.tendsto_atTop_iff {α : Type u_3} {β : Type u_4} {γ : Type u_5} [Preorder α] [Preorder β] {l : Filter γ} {f : γα} (e : α ≃o β) :
      Filter.Tendsto (fun x => e (f x)) l Filter.atTop Filter.Tendsto f l Filter.atTop
      @[simp]
      theorem OrderIso.tendsto_atBot_iff {α : Type u_3} {β : Type u_4} {γ : Type u_5} [Preorder α] [Preorder β] {l : Filter γ} {f : γα} (e : α ≃o β) :
      Filter.Tendsto (fun x => e (f x)) l Filter.atBot Filter.Tendsto f l Filter.atBot

      Sequences #

      theorem Filter.inf_map_atTop_neBot_iff {α : Type u_3} {β : Type u_4} [SemilatticeSup α] [Nonempty α] {F : Filter β} {u : αβ} :
      Filter.NeBot (F Filter.map u Filter.atTop) ∀ (U : Set β), U F∀ (N : α), n, n N u n U
      theorem Filter.inf_map_atBot_neBot_iff {α : Type u_3} {β : Type u_4} [SemilatticeInf α] [Nonempty α] {F : Filter β} {u : αβ} :
      Filter.NeBot (F Filter.map u Filter.atBot) ∀ (U : Set β), U F∀ (N : α), n, n N u n U
      theorem Filter.extraction_of_frequently_atTop' {P : Prop} (h : ∀ (N : ), n, n > N P n) :
      φ, StrictMono φ ((n : ) → P (φ n))
      theorem Filter.extraction_of_frequently_atTop {P : Prop} (h : ∃ᶠ (n : ) in Filter.atTop, P n) :
      φ, StrictMono φ ((n : ) → P (φ n))
      theorem Filter.extraction_of_eventually_atTop {P : Prop} (h : ∀ᶠ (n : ) in Filter.atTop, P n) :
      φ, StrictMono φ ((n : ) → P (φ n))
      theorem Filter.extraction_forall_of_frequently {P : Prop} (h : ∀ (n : ), ∃ᶠ (k : ) in Filter.atTop, P n k) :
      φ, StrictMono φ ((n : ) → P n (φ n))
      theorem Filter.extraction_forall_of_eventually {P : Prop} (h : ∀ (n : ), ∀ᶠ (k : ) in Filter.atTop, P n k) :
      φ, StrictMono φ ((n : ) → P n (φ n))
      theorem Filter.extraction_forall_of_eventually' {P : Prop} (h : ∀ (n : ), N, (k : ) → k NP n k) :
      φ, StrictMono φ ((n : ) → P n (φ n))
      theorem Filter.Eventually.atTop_of_arithmetic {p : Prop} {n : } (hn : n 0) (hp : ∀ (k : ), k < n∀ᶠ (a : ) in Filter.atTop, p (n * a + k)) :
      ∀ᶠ (a : ) in Filter.atTop, p a
      theorem Filter.exists_le_of_tendsto_atTop {α : Type u_3} {β : Type u_4} [SemilatticeSup α] [Preorder β] {u : αβ} (h : Filter.Tendsto u Filter.atTop Filter.atTop) (a : α) (b : β) :
      a', a' a b u a'
      theorem Filter.exists_le_of_tendsto_atBot {α : Type u_3} {β : Type u_4} [SemilatticeSup α] [Preorder β] {u : αβ} (h : Filter.Tendsto u Filter.atTop Filter.atBot) (a : α) (b : β) :
      a', a' a u a' b
      theorem Filter.exists_lt_of_tendsto_atTop {α : Type u_3} {β : Type u_4} [SemilatticeSup α] [Preorder β] [NoMaxOrder β] {u : αβ} (h : Filter.Tendsto u Filter.atTop Filter.atTop) (a : α) (b : β) :
      a', a' a b < u a'
      theorem Filter.exists_lt_of_tendsto_atBot {α : Type u_3} {β : Type u_4} [SemilatticeSup α] [Preorder β] [NoMinOrder β] {u : αβ} (h : Filter.Tendsto u Filter.atTop Filter.atBot) (a : α) (b : β) :
      a', a' a u a' < b
      theorem Filter.high_scores {β : Type u_4} [LinearOrder β] [NoMaxOrder β] {u : β} (hu : Filter.Tendsto u Filter.atTop Filter.atTop) (N : ) :
      n, n N ∀ (k : ), k < nu k < u n

      If u is a sequence which is unbounded above, then after any point, it reaches a value strictly greater than all previous values.

      theorem Filter.low_scores {β : Type u_4} [LinearOrder β] [NoMinOrder β] {u : β} (hu : Filter.Tendsto u Filter.atTop Filter.atBot) (N : ) :
      n, n N ∀ (k : ), k < nu n < u k

      If u is a sequence which is unbounded below, then after any point, it reaches a value strictly smaller than all previous values.

      theorem Filter.frequently_high_scores {β : Type u_4} [LinearOrder β] [NoMaxOrder β] {u : β} (hu : Filter.Tendsto u Filter.atTop Filter.atTop) :
      ∃ᶠ (n : ) in Filter.atTop, ∀ (k : ), k < nu k < u n

      If u is a sequence which is unbounded above, then it Frequently reaches a value strictly greater than all previous values.

      theorem Filter.frequently_low_scores {β : Type u_4} [LinearOrder β] [NoMinOrder β] {u : β} (hu : Filter.Tendsto u Filter.atTop Filter.atBot) :
      ∃ᶠ (n : ) in Filter.atTop, ∀ (k : ), k < nu n < u k

      If u is a sequence which is unbounded below, then it Frequently reaches a value strictly smaller than all previous values.

      theorem Filter.strictMono_subseq_of_tendsto_atTop {β : Type u_6} [LinearOrder β] [NoMaxOrder β] {u : β} (hu : Filter.Tendsto u Filter.atTop Filter.atTop) :
      φ, StrictMono φ StrictMono (u φ)
      theorem Filter.strictMono_subseq_of_id_le {u : } (hu : ∀ (n : ), n u n) :
      φ, StrictMono φ StrictMono (u φ)
      theorem StrictMono.tendsto_atTop {φ : } (h : StrictMono φ) :
      Filter.Tendsto φ Filter.atTop Filter.atTop
      theorem Filter.tendsto_atTop_add_nonneg_left' {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : ∀ᶠ (x : α) in l, 0 f x) (hg : Filter.Tendsto g l Filter.atTop) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTop
      theorem Filter.tendsto_atBot_add_nonpos_left' {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : ∀ᶠ (x : α) in l, f x 0) (hg : Filter.Tendsto g l Filter.atBot) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBot
      theorem Filter.tendsto_atTop_add_nonneg_left {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : ∀ (x : α), 0 f x) (hg : Filter.Tendsto g l Filter.atTop) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTop
      theorem Filter.tendsto_atBot_add_nonpos_left {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : ∀ (x : α), f x 0) (hg : Filter.Tendsto g l Filter.atBot) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBot
      theorem Filter.tendsto_atTop_add_nonneg_right' {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atTop) (hg : ∀ᶠ (x : α) in l, 0 g x) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTop
      theorem Filter.tendsto_atBot_add_nonpos_right' {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atBot) (hg : ∀ᶠ (x : α) in l, g x 0) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBot
      theorem Filter.tendsto_atTop_add_nonneg_right {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atTop) (hg : ∀ (x : α), 0 g x) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTop
      theorem Filter.tendsto_atBot_add_nonpos_right {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atBot) (hg : ∀ (x : α), g x 0) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBot
      theorem Filter.tendsto_atTop_add {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atTop) (hg : Filter.Tendsto g l Filter.atTop) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTop
      theorem Filter.tendsto_atBot_add {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atBot) (hg : Filter.Tendsto g l Filter.atBot) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBot
      theorem Filter.Tendsto.nsmul_atTop {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} (hf : Filter.Tendsto f l Filter.atTop) {n : } (hn : 0 < n) :
      Filter.Tendsto (fun x => n f x) l Filter.atTop
      theorem Filter.Tendsto.nsmul_atBot {α : Type u_3} {β : Type u_4} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} (hf : Filter.Tendsto f l Filter.atBot) {n : } (hn : 0 < n) :
      Filter.Tendsto (fun x => n f x) l Filter.atBot
      @[deprecated]
      theorem Filter.tendsto_bit0_atTop {β : Type u_4} [OrderedAddCommMonoid β] :
      Filter.Tendsto bit0 Filter.atTop Filter.atTop
      @[deprecated]
      theorem Filter.tendsto_bit0_atBot {β : Type u_4} [OrderedAddCommMonoid β] :
      Filter.Tendsto bit0 Filter.atBot Filter.atBot
      theorem Filter.tendsto_atTop_of_add_const_left {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} (C : β) (hf : Filter.Tendsto (fun x => C + f x) l Filter.atTop) :
      Filter.Tendsto f l Filter.atTop
      theorem Filter.tendsto_atBot_of_add_const_left {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} (C : β) (hf : Filter.Tendsto (fun x => C + f x) l Filter.atBot) :
      Filter.Tendsto f l Filter.atBot
      theorem Filter.tendsto_atTop_of_add_const_right {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} (C : β) (hf : Filter.Tendsto (fun x => f x + C) l Filter.atTop) :
      Filter.Tendsto f l Filter.atTop
      theorem Filter.tendsto_atBot_of_add_const_right {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} (C : β) (hf : Filter.Tendsto (fun x => f x + C) l Filter.atBot) :
      Filter.Tendsto f l Filter.atBot
      theorem Filter.tendsto_atTop_of_add_bdd_above_left' {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ᶠ (x : α) in l, f x C) (h : Filter.Tendsto (fun x => f x + g x) l Filter.atTop) :
      Filter.Tendsto g l Filter.atTop
      theorem Filter.tendsto_atBot_of_add_bdd_below_left' {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ᶠ (x : α) in l, C f x) (h : Filter.Tendsto (fun x => f x + g x) l Filter.atBot) :
      Filter.Tendsto g l Filter.atBot
      theorem Filter.tendsto_atTop_of_add_bdd_above_left {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ (x : α), f x C) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTopFilter.Tendsto g l Filter.atTop
      theorem Filter.tendsto_atBot_of_add_bdd_below_left {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ (x : α), C f x) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBotFilter.Tendsto g l Filter.atBot
      theorem Filter.tendsto_atTop_of_add_bdd_above_right' {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ᶠ (x : α) in l, g x C) (h : Filter.Tendsto (fun x => f x + g x) l Filter.atTop) :
      Filter.Tendsto f l Filter.atTop
      theorem Filter.tendsto_atBot_of_add_bdd_below_right' {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ᶠ (x : α) in l, C g x) (h : Filter.Tendsto (fun x => f x + g x) l Filter.atBot) :
      Filter.Tendsto f l Filter.atBot
      theorem Filter.tendsto_atTop_of_add_bdd_above_right {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ (x : α), g x C) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTopFilter.Tendsto f l Filter.atTop
      theorem Filter.tendsto_atBot_of_add_bdd_below_right {α : Type u_3} {β : Type u_4} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ (x : α), C g x) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBotFilter.Tendsto f l Filter.atBot
      theorem Filter.tendsto_atTop_add_left_of_le' {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} {g : αβ} (C : β) (hf : ∀ᶠ (x : α) in l, C f x) (hg : Filter.Tendsto g l Filter.atTop) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTop
      theorem Filter.tendsto_atBot_add_left_of_ge' {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} {g : αβ} (C : β) (hf : ∀ᶠ (x : α) in l, f x C) (hg : Filter.Tendsto g l Filter.atBot) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBot
      theorem Filter.tendsto_atTop_add_left_of_le {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} {g : αβ} (C : β) (hf : ∀ (x : α), C f x) (hg : Filter.Tendsto g l Filter.atTop) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTop
      theorem Filter.tendsto_atBot_add_left_of_ge {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} {g : αβ} (C : β) (hf : ∀ (x : α), f x C) (hg : Filter.Tendsto g l Filter.atBot) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBot
      theorem Filter.tendsto_atTop_add_right_of_le' {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} {g : αβ} (C : β) (hf : Filter.Tendsto f l Filter.atTop) (hg : ∀ᶠ (x : α) in l, C g x) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTop
      theorem Filter.tendsto_atBot_add_right_of_ge' {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} {g : αβ} (C : β) (hf : Filter.Tendsto f l Filter.atBot) (hg : ∀ᶠ (x : α) in l, g x C) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBot
      theorem Filter.tendsto_atTop_add_right_of_le {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} {g : αβ} (C : β) (hf : Filter.Tendsto f l Filter.atTop) (hg : ∀ (x : α), C g x) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atTop
      theorem Filter.tendsto_atBot_add_right_of_ge {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} {g : αβ} (C : β) (hf : Filter.Tendsto f l Filter.atBot) (hg : ∀ (x : α), g x C) :
      Filter.Tendsto (fun x => f x + g x) l Filter.atBot
      theorem Filter.tendsto_atTop_add_const_left {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} (C : β) (hf : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => C + f x) l Filter.atTop
      theorem Filter.tendsto_atBot_add_const_left {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} (C : β) (hf : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => C + f x) l Filter.atBot
      theorem Filter.tendsto_atTop_add_const_right {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} (C : β) (hf : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => f x + C) l Filter.atTop
      theorem Filter.tendsto_atBot_add_const_right {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] (l : Filter α) {f : αβ} (C : β) (hf : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => f x + C) l Filter.atBot
      theorem Filter.map_neg_atBot {β : Type u_4} [OrderedAddCommGroup β] :
      Filter.map Neg.neg Filter.atBot = Filter.atTop
      theorem Filter.map_neg_atTop {β : Type u_4} [OrderedAddCommGroup β] :
      Filter.map Neg.neg Filter.atTop = Filter.atBot
      @[simp]
      theorem Filter.comap_neg_atBot {β : Type u_4} [OrderedAddCommGroup β] :
      Filter.comap Neg.neg Filter.atBot = Filter.atTop
      @[simp]
      theorem Filter.comap_neg_atTop {β : Type u_4} [OrderedAddCommGroup β] :
      Filter.comap Neg.neg Filter.atTop = Filter.atBot
      theorem Filter.tendsto_neg_atTop_atBot {β : Type u_4} [OrderedAddCommGroup β] :
      Filter.Tendsto Neg.neg Filter.atTop Filter.atBot
      theorem Filter.tendsto_neg_atBot_atTop {β : Type u_4} [OrderedAddCommGroup β] :
      Filter.Tendsto Neg.neg Filter.atBot Filter.atTop
      @[simp]
      theorem Filter.tendsto_neg_atTop_iff {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] {l : Filter α} {f : αβ} :
      Filter.Tendsto (fun x => -f x) l Filter.atTop Filter.Tendsto f l Filter.atBot
      @[simp]
      theorem Filter.tendsto_neg_atBot_iff {α : Type u_3} {β : Type u_4} [OrderedAddCommGroup β] {l : Filter α} {f : αβ} :
      Filter.Tendsto (fun x => -f x) l Filter.atBot Filter.Tendsto f l Filter.atTop
      @[deprecated]
      theorem Filter.tendsto_bit1_atTop {α : Type u_3} [StrictOrderedSemiring α] :
      Filter.Tendsto bit1 Filter.atTop Filter.atTop
      theorem Filter.Tendsto.atTop_mul_atTop {α : Type u_3} {β : Type u_4} [StrictOrderedSemiring α] {l : Filter β} {f : βα} {g : βα} (hf : Filter.Tendsto f l Filter.atTop) (hg : Filter.Tendsto g l Filter.atTop) :
      Filter.Tendsto (fun x => f x * g x) l Filter.atTop
      theorem Filter.tendsto_mul_self_atTop {α : Type u_3} [StrictOrderedSemiring α] :
      Filter.Tendsto (fun x => x * x) Filter.atTop Filter.atTop
      theorem Filter.tendsto_pow_atTop {α : Type u_3} [StrictOrderedSemiring α] {n : } (hn : n 0) :
      Filter.Tendsto (fun x => x ^ n) Filter.atTop Filter.atTop

      The monomial function x^n tends to +∞ at +∞ for any positive natural n. A version for positive real powers exists as tendsto_rpow_atTop.

      theorem Filter.zero_pow_eventuallyEq {α : Type u_3} [MonoidWithZero α] :
      (fun n => 0 ^ n) =ᶠ[Filter.atTop] fun x => 0
      theorem Filter.Tendsto.atTop_mul_atBot {α : Type u_3} {β : Type u_4} [StrictOrderedRing α] {l : Filter β} {f : βα} {g : βα} (hf : Filter.Tendsto f l Filter.atTop) (hg : Filter.Tendsto g l Filter.atBot) :
      Filter.Tendsto (fun x => f x * g x) l Filter.atBot
      theorem Filter.Tendsto.atBot_mul_atTop {α : Type u_3} {β : Type u_4} [StrictOrderedRing α] {l : Filter β} {f : βα} {g : βα} (hf : Filter.Tendsto f l Filter.atBot) (hg : Filter.Tendsto g l Filter.atTop) :
      Filter.Tendsto (fun x => f x * g x) l Filter.atBot
      theorem Filter.Tendsto.atBot_mul_atBot {α : Type u_3} {β : Type u_4} [StrictOrderedRing α] {l : Filter β} {f : βα} {g : βα} (hf : Filter.Tendsto f l Filter.atBot) (hg : Filter.Tendsto g l Filter.atBot) :
      Filter.Tendsto (fun x => f x * g x) l Filter.atTop
      theorem Filter.tendsto_abs_atTop_atTop {α : Type u_3} [LinearOrderedAddCommGroup α] :
      Filter.Tendsto abs Filter.atTop Filter.atTop

      $\lim_{x\to+\infty}|x|=+\infty$

      theorem Filter.tendsto_abs_atBot_atTop {α : Type u_3} [LinearOrderedAddCommGroup α] :
      Filter.Tendsto abs Filter.atBot Filter.atTop

      $\lim_{x\to-\infty}|x|=+\infty$

      @[simp]
      theorem Filter.comap_abs_atTop {α : Type u_3} [LinearOrderedAddCommGroup α] :
      Filter.comap abs Filter.atTop = Filter.atBot Filter.atTop
      theorem Filter.Tendsto.atTop_of_const_mul {α : Type u_3} {β : Type u_4} [LinearOrderedSemiring α] {l : Filter β} {f : βα} {c : α} (hc : 0 < c) (hf : Filter.Tendsto (fun x => c * f x) l Filter.atTop) :
      Filter.Tendsto f l Filter.atTop
      theorem Filter.Tendsto.atTop_of_mul_const {α : Type u_3} {β : Type u_4} [LinearOrderedSemiring α] {l : Filter β} {f : βα} {c : α} (hc : 0 < c) (hf : Filter.Tendsto (fun x => f x * c) l Filter.atTop) :
      Filter.Tendsto f l Filter.atTop
      @[simp]
      theorem Filter.tendsto_pow_atTop_iff {α : Type u_3} [LinearOrderedSemiring α] {n : } :
      Filter.Tendsto (fun x => x ^ n) Filter.atTop Filter.atTop n 0
      theorem Filter.nonneg_of_eventually_pow_nonneg {α : Type u_3} [LinearOrderedRing α] {a : α} (h : ∀ᶠ (n : ) in Filter.atTop, 0 a ^ n) :
      0 a
      theorem Filter.not_tendsto_pow_atTop_atBot {α : Type u_3} [LinearOrderedRing α] {n : } :
      ¬Filter.Tendsto (fun x => x ^ n) Filter.atTop Filter.atBot

      Multiplication by constant: iff lemmas #

      theorem Filter.tendsto_const_mul_atTop_of_pos {α : Type u_3} {β : Type u_4} [LinearOrderedSemifield α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) :
      Filter.Tendsto (fun x => r * f x) l Filter.atTop Filter.Tendsto f l Filter.atTop

      If r is a positive constant, then λ x, r * f x tends to infinity along a filter if and only if f tends to infinity along the same filter.

      theorem Filter.tendsto_mul_const_atTop_of_pos {α : Type u_3} {β : Type u_4} [LinearOrderedSemifield α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) :
      Filter.Tendsto (fun x => f x * r) l Filter.atTop Filter.Tendsto f l Filter.atTop

      If r is a positive constant, then λ x, f x * r tends to infinity along a filter if and only if f tends to infinity along the same filter.

      theorem Filter.tendsto_div_const_atTop_of_pos {α : Type u_3} {β : Type u_4} [LinearOrderedSemifield α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) :
      Filter.Tendsto (fun x => f x / r) l Filter.atTop Filter.Tendsto f l Filter.atTop

      If r is a positive constant, then x ↦ f x * r tends to infinity along a filter if and only if f tends to infinity along the same filter.

      theorem Filter.tendsto_const_mul_atTop_iff_pos {α : Type u_3} {β : Type u_4} [LinearOrderedSemifield α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] (h : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => r * f x) l Filter.atTop 0 < r

      If f tends to infinity along a nontrivial filter l, then fun x ↦ r * f x tends to infinity if and only if 0 < r.

      theorem Filter.tendsto_mul_const_atTop_iff_pos {α : Type u_3} {β : Type u_4} [LinearOrderedSemifield α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] (h : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => f x * r) l Filter.atTop 0 < r

      If f tends to infinity along a nontrivial filter l, then fun x ↦ f x * r tends to infinity if and only if 0 < r.

      theorem Filter.tendsto_div_const_atTop_iff_pos {α : Type u_3} {β : Type u_4} [LinearOrderedSemifield α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] (h : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => f x / r) l Filter.atTop 0 < r

      If f tends to infinity along a nontrivial filter l, then x ↦ f x * r tends to infinity if and only if 0 < r.

      theorem Filter.Tendsto.const_mul_atTop {α : Type u_3} {β : Type u_4} [LinearOrderedSemifield α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) (hf : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => r * f x) l Filter.atTop

      If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the left) also tends to infinity. For a version working in or , use filter.tendsto.const_mul_atTop' instead.

      theorem Filter.Tendsto.atTop_mul_const {α : Type u_3} {β : Type u_4} [LinearOrderedSemifield α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) (hf : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => f x * r) l Filter.atTop

      If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the right) also tends to infinity. For a version working in or , use filter.tendsto.atTop_mul_const' instead.

      theorem Filter.Tendsto.atTop_div_const {α : Type u_3} {β : Type u_4} [LinearOrderedSemifield α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) (hf : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => f x / r) l Filter.atTop

      If a function tends to infinity along a filter, then this function divided by a positive constant also tends to infinity.

      theorem Filter.tendsto_const_mul_pow_atTop {α : Type u_3} [LinearOrderedSemifield α] {c : α} {n : } (hn : n 0) (hc : 0 < c) :
      Filter.Tendsto (fun x => c * x ^ n) Filter.atTop Filter.atTop
      theorem Filter.tendsto_const_mul_pow_atTop_iff {α : Type u_3} [LinearOrderedSemifield α] {c : α} {n : } :
      Filter.Tendsto (fun x => c * x ^ n) Filter.atTop Filter.atTop n 0 0 < c
      theorem Filter.tendsto_const_mul_atBot_of_pos {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) :
      Filter.Tendsto (fun x => r * f x) l Filter.atBot Filter.Tendsto f l Filter.atBot

      If r is a positive constant, then λ x, r * f x tends to negative infinity along a filter if and only if f tends to negative infinity along the same filter.

      theorem Filter.tendsto_mul_const_atBot_of_pos {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) :
      Filter.Tendsto (fun x => f x * r) l Filter.atBot Filter.Tendsto f l Filter.atBot

      If r is a positive constant, then λ x, f x * r tends to negative infinity along a filter if and only if f tends to negative infinity along the same filter.

      theorem Filter.tendsto_const_mul_atTop_of_neg {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : r < 0) :
      Filter.Tendsto (fun x => r * f x) l Filter.atTop Filter.Tendsto f l Filter.atBot

      If r is a negative constant, then λ x, r * f x tends to infinity along a filter if and only if f tends to negative infinity along the same filter.

      theorem Filter.tendsto_mul_const_atTop_of_neg {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : r < 0) :
      Filter.Tendsto (fun x => f x * r) l Filter.atTop Filter.Tendsto f l Filter.atBot

      If r is a negative constant, then λ x, f x * r tends to infinity along a filter if and only if f tends to negative infinity along the same filter.

      theorem Filter.tendsto_const_mul_atBot_of_neg {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : r < 0) :
      Filter.Tendsto (fun x => r * f x) l Filter.atBot Filter.Tendsto f l Filter.atTop

      If r is a negative constant, then λ x, r * f x tends to negative infinity along a filter if and only if f tends to infinity along the same filter.

      theorem Filter.tendsto_mul_const_atBot_of_neg {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : r < 0) :
      Filter.Tendsto (fun x => f x * r) l Filter.atBot Filter.Tendsto f l Filter.atTop

      If r is a negative constant, then λ x, f x * r tends to negative infinity along a filter if and only if f tends to infinity along the same filter.

      theorem Filter.tendsto_const_mul_atTop_iff {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] :
      Filter.Tendsto (fun x => r * f x) l Filter.atTop 0 < r Filter.Tendsto f l Filter.atTop r < 0 Filter.Tendsto f l Filter.atBot

      The function λ x, r * f x tends to infinity along a nontrivial filter if and only if r > 0 and f tends to infinity or r < 0 and f tends to negative infinity.

      theorem Filter.tendsto_mul_const_atTop_iff {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] :
      Filter.Tendsto (fun x => f x * r) l Filter.atTop 0 < r Filter.Tendsto f l Filter.atTop r < 0 Filter.Tendsto f l Filter.atBot

      The function λ x, f x * r tends to infinity along a nontrivial filter if and only if r > 0 and f tends to infinity or r < 0 and f tends to negative infinity.

      theorem Filter.tendsto_const_mul_atBot_iff {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] :
      Filter.Tendsto (fun x => r * f x) l Filter.atBot 0 < r Filter.Tendsto f l Filter.atBot r < 0 Filter.Tendsto f l Filter.atTop

      The function λ x, r * f x tends to negative infinity along a nontrivial filter if and only if r > 0 and f tends to negative infinity or r < 0 and f tends to infinity.

      theorem Filter.tendsto_mul_const_atBot_iff {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] :
      Filter.Tendsto (fun x => f x * r) l Filter.atBot 0 < r Filter.Tendsto f l Filter.atBot r < 0 Filter.Tendsto f l Filter.atTop

      The function λ x, f x * r tends to negative infinity along a nontrivial filter if and only if r > 0 and f tends to negative infinity or r < 0 and f tends to infinity.

      theorem Filter.tendsto_const_mul_atTop_iff_neg {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] (h : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => r * f x) l Filter.atTop r < 0

      If f tends to negative infinity along a nontrivial filter l, then fun x ↦ r * f x tends to infinity if and only if r < 0.

      theorem Filter.tendsto_mul_const_atTop_iff_neg {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] (h : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => f x * r) l Filter.atTop r < 0

      If f tends to negative infinity along a nontrivial filter l, then fun x ↦ f x * r tends to infinity if and only if r < 0.

      theorem Filter.tendsto_const_mul_atBot_iff_pos {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] (h : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => r * f x) l Filter.atBot 0 < r

      If f tends to negative infinity along a nontrivial filter l, then fun x ↦ r * f x tends to negative infinity if and only if 0 < r.

      theorem Filter.tendsto_mul_const_atBot_iff_pos {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] (h : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => f x * r) l Filter.atBot 0 < r

      If f tends to negative infinity along a nontrivial filter l, then fun x ↦ f x * r tends to negative infinity if and only if 0 < r.

      theorem Filter.tendsto_const_mul_atBot_iff_neg {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] (h : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => r * f x) l Filter.atBot r < 0

      If f tends to infinity along a nontrivial filter l, then fun x ↦ r * f x tends to negative infinity if and only if r < 0.

      theorem Filter.tendsto_mul_const_atBot_iff_neg {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} [Filter.NeBot l] (h : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => f x * r) l Filter.atBot r < 0

      If f tends to infinity along a nontrivial filter l, then fun x ↦ f x * r tends to negative infinity if and only if r < 0.

      theorem Filter.Tendsto.neg_const_mul_atTop {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : r < 0) (hf : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => r * f x) l Filter.atBot

      If a function tends to infinity along a filter, then this function multiplied by a negative constant (on the left) tends to negative infinity.

      theorem Filter.Tendsto.atTop_mul_neg_const {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : r < 0) (hf : Filter.Tendsto f l Filter.atTop) :
      Filter.Tendsto (fun x => f x * r) l Filter.atBot

      If a function tends to infinity along a filter, then this function multiplied by a negative constant (on the right) tends to negative infinity.

      theorem Filter.Tendsto.const_mul_atBot {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) (hf : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => r * f x) l Filter.atBot

      If a function tends to negative infinity along a filter, then this function multiplied by a positive constant (on the left) also tends to negative infinity.

      theorem Filter.Tendsto.atBot_mul_const {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) (hf : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => f x * r) l Filter.atBot

      If a function tends to negative infinity along a filter, then this function multiplied by a positive constant (on the right) also tends to negative infinity.

      theorem Filter.Tendsto.atBot_div_const {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : 0 < r) (hf : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => f x / r) l Filter.atBot

      If a function tends to negative infinity along a filter, then this function divided by a positive constant also tends to negative infinity.

      theorem Filter.Tendsto.neg_const_mul_atBot {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : r < 0) (hf : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => r * f x) l Filter.atTop

      If a function tends to negative infinity along a filter, then this function multiplied by a negative constant (on the left) tends to positive infinity.

      theorem Filter.Tendsto.atBot_mul_neg_const {α : Type u_3} {β : Type u_4} [LinearOrderedField α] {l : Filter β} {f : βα} {r : α} (hr : r < 0) (hf : Filter.Tendsto f l Filter.atBot) :
      Filter.Tendsto (fun x => f x * r) l Filter.atTop

      If a function tends to negative infinity along a filter, then this function multiplied by a negative constant (on the right) tends to positive infinity.

      theorem Filter.tendsto_neg_const_mul_pow_atTop {α : Type u_3} [LinearOrderedField α] {c : α} {n : } (hn : n 0) (hc : c < 0) :
      Filter.Tendsto (fun x => c * x ^ n) Filter.atTop Filter.atBot
      theorem Filter.tendsto_const_mul_pow_atBot_iff {α : Type u_3} [LinearOrderedField α] {c : α} {n : } :
      Filter.Tendsto (fun x => c * x ^ n) Filter.atTop Filter.atBot n 0 c < 0
      theorem Filter.tendsto_atTop' {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeSup α] {f : αβ} {l : Filter β} :
      Filter.Tendsto f Filter.atTop l ∀ (s : Set β), s la, ∀ (b : α), b af b s
      theorem Filter.tendsto_atBot' {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeInf α] {f : αβ} {l : Filter β} :
      Filter.Tendsto f Filter.atBot l ∀ (s : Set β), s la, ∀ (b : α), b af b s
      theorem Filter.tendsto_atTop_principal {α : Type u_3} {β : Type u_4} [Nonempty β] [SemilatticeSup β] {f : βα} {s : Set α} :
      Filter.Tendsto f Filter.atTop (Filter.principal s) N, ∀ (n : β), n Nf n s
      theorem Filter.tendsto_atBot_principal {α : Type u_3} {β : Type u_4} [Nonempty β] [SemilatticeInf β] {f : βα} {s : Set α} :
      Filter.Tendsto f Filter.atBot (Filter.principal s) N, ∀ (n : β), n Nf n s
      theorem Filter.tendsto_atTop_atTop {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeSup α] [Preorder β] {f : αβ} :
      Filter.Tendsto f Filter.atTop Filter.atTop ∀ (b : β), i, ∀ (a : α), i ab f a

      A function f grows to +∞ independent of an order-preserving embedding e.

      theorem Filter.tendsto_atTop_atBot {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeSup α] [Preorder β] {f : αβ} :
      Filter.Tendsto f Filter.atTop Filter.atBot ∀ (b : β), i, ∀ (a : α), i af a b
      theorem Filter.tendsto_atBot_atTop {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeInf α] [Preorder β] {f : αβ} :
      Filter.Tendsto f Filter.atBot Filter.atTop ∀ (b : β), i, ∀ (a : α), a ib f a
      theorem Filter.tendsto_atBot_atBot {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeInf α] [Preorder β] {f : αβ} :
      Filter.Tendsto f Filter.atBot Filter.atBot ∀ (b : β), i, ∀ (a : α), a if a b
      theorem Filter.tendsto_atTop_atTop_of_monotone {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] {f : αβ} (hf : Monotone f) (h : ∀ (b : β), a, b f a) :
      Filter.Tendsto f Filter.atTop Filter.atTop
      theorem Filter.tendsto_atBot_atBot_of_monotone {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] {f : αβ} (hf : Monotone f) (h : ∀ (b : β), a, f a b) :
      Filter.Tendsto f Filter.atBot Filter.atBot
      theorem Filter.tendsto_atTop_atTop_iff_of_monotone {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeSup α] [Preorder β] {f : αβ} (hf : Monotone f) :
      Filter.Tendsto f Filter.atTop Filter.atTop ∀ (b : β), a, b f a
      theorem Filter.tendsto_atBot_atBot_iff_of_monotone {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeInf α] [Preorder β] {f : αβ} (hf : Monotone f) :
      Filter.Tendsto f Filter.atBot Filter.atBot ∀ (b : β), a, f a b
      theorem Monotone.tendsto_atTop_atTop {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] {f : αβ} (hf : Monotone f) (h : ∀ (b : β), a, b f a) :
      Filter.Tendsto f Filter.atTop Filter.atTop

      Alias of Filter.tendsto_atTop_atTop_of_monotone.

      theorem Monotone.tendsto_atBot_atBot {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] {f : αβ} (hf : Monotone f) (h : ∀ (b : β), a, f a b) :
      Filter.Tendsto f Filter.atBot Filter.atBot

      Alias of Filter.tendsto_atBot_atBot_of_monotone.

      theorem Monotone.tendsto_atTop_atTop_iff {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeSup α] [Preorder β] {f : αβ} (hf : Monotone f) :
      Filter.Tendsto f Filter.atTop Filter.atTop ∀ (b : β), a, b f a

      Alias of Filter.tendsto_atTop_atTop_iff_of_monotone.

      theorem Monotone.tendsto_atBot_atBot_iff {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeInf α] [Preorder β] {f : αβ} (hf : Monotone f) :
      Filter.Tendsto f Filter.atBot Filter.atBot ∀ (b : β), a, f a b

      Alias of Filter.tendsto_atBot_atBot_iff_of_monotone.

      theorem Filter.comap_embedding_atTop {β : Type u_4} {γ : Type u_5} [Preorder β] [Preorder γ] {e : βγ} (hm : ∀ (b₁ b₂ : β), e b₁ e b₂ b₁ b₂) (hu : ∀ (c : γ), b, c e b) :
      Filter.comap e Filter.atTop = Filter.atTop
      theorem Filter.comap_embedding_atBot {β : Type u_4} {γ : Type u_5} [Preorder β] [Preorder γ] {e : βγ} (hm : ∀ (b₁ b₂ : β), e b₁ e b₂ b₁ b₂) (hu : ∀ (c : γ), b, e b c) :
      Filter.comap e Filter.atBot = Filter.atBot
      theorem Filter.tendsto_atTop_embedding {α : Type u_3} {β : Type u_4} {γ : Type u_5} [Preorder β] [Preorder γ] {f : αβ} {e : βγ} {l : Filter α} (hm : ∀ (b₁ b₂ : β), e b₁ e b₂ b₁ b₂) (hu : ∀ (c : γ), b, c e b) :
      Filter.Tendsto (e f) l Filter.atTop Filter.Tendsto f l Filter.atTop
      theorem Filter.tendsto_atBot_embedding {α : Type u_3} {β : Type u_4} {γ : Type u_5} [Preorder β] [Preorder γ] {f : αβ} {e : βγ} {l : Filter α} (hm : ∀ (b₁ b₂ : β), e b₁ e b₂ b₁ b₂) (hu : ∀ (c : γ), b, e b c) :
      Filter.Tendsto (e f) l Filter.atBot Filter.Tendsto f l Filter.atBot

      A function f goes to -∞ independent of an order-preserving embedding e.

      theorem Filter.atTop_finset_eq_iInf {α : Type u_3} :
      Filter.atTop = ⨅ (x : α), Filter.principal (Set.Ici {x})
      theorem Filter.tendsto_atTop_finset_of_monotone {α : Type u_3} {β : Type u_4} [Preorder β] {f : βFinset α} (h : Monotone f) (h' : ∀ (x : α), n, x f n) :
      Filter.Tendsto f Filter.atTop Filter.atTop

      If f is a monotone sequence of Finsets and each x belongs to one of f n, then Tendsto f atTop atTop.

      theorem Monotone.tendsto_atTop_finset {α : Type u_3} {β : Type u_4} [Preorder β] {f : βFinset α} (h : Monotone f) (h' : ∀ (x : α), n, x f n) :
      Filter.Tendsto f Filter.atTop Filter.atTop

      Alias of Filter.tendsto_atTop_finset_of_monotone.


      If f is a monotone sequence of Finsets and each x belongs to one of f n, then Tendsto f atTop atTop.

      theorem Filter.tendsto_finset_image_atTop_atTop {β : Type u_4} {γ : Type u_5} [DecidableEq β] {i : βγ} {j : γβ} (h : Function.LeftInverse j i) :
      Filter.Tendsto (Finset.image j) Filter.atTop Filter.atTop
      theorem Filter.tendsto_finset_preimage_atTop_atTop {α : Type u_3} {β : Type u_4} {f : αβ} (hf : Function.Injective f) :
      Filter.Tendsto (fun s => Finset.preimage s f (_ : Set.InjOn f (f ⁻¹' s))) Filter.atTop Filter.atTop
      theorem Filter.prod_atTop_atTop_eq {α : Type u_3} {β : Type u_4} [Preorder α] [Preorder β] :
      Filter.atTop ×ˢ Filter.atTop = Filter.atTop
      theorem Filter.prod_atBot_atBot_eq {β₁ : Type u_6} {β₂ : Type u_7} [Preorder β₁] [Preorder β₂] :
      Filter.atBot ×ˢ Filter.atBot = Filter.atBot
      theorem Filter.prod_map_atTop_eq {α₁ : Type u_6} {α₂ : Type u_7} {β₁ : Type u_8} {β₂ : Type u_9} [Preorder β₁] [Preorder β₂] (u₁ : β₁α₁) (u₂ : β₂α₂) :
      Filter.map u₁ Filter.atTop ×ˢ Filter.map u₂ Filter.atTop = Filter.map (Prod.map u₁ u₂) Filter.atTop
      theorem Filter.prod_map_atBot_eq {α₁ : Type u_6} {α₂ : Type u_7} {β₁ : Type u_8} {β₂ : Type u_9} [Preorder β₁] [Preorder β₂] (u₁ : β₁α₁) (u₂ : β₂α₂) :
      Filter.map u₁ Filter.atBot ×ˢ Filter.map u₂ Filter.atBot = Filter.map (Prod.map u₁ u₂) Filter.atBot
      theorem Filter.Tendsto.subseq_mem {α : Type u_3} {F : Filter α} {V : Set α} (h : ∀ (n : ), V n F) {u : α} (hu : Filter.Tendsto u Filter.atTop F) :
      φ, StrictMono φ ∀ (n : ), u (φ n) V n
      theorem Filter.tendsto_atBot_diagonal {α : Type u_3} [SemilatticeInf α] :
      Filter.Tendsto (fun a => (a, a)) Filter.atBot Filter.atBot
      theorem Filter.tendsto_atTop_diagonal {α : Type u_3} [SemilatticeSup α] :
      Filter.Tendsto (fun a => (a, a)) Filter.atTop Filter.atTop
      theorem Filter.Tendsto.prod_map_prod_atBot {α : Type u_3} {β : Type u_4} {γ : Type u_5} [SemilatticeInf γ] {F : Filter α} {G : Filter β} {f : αγ} {g : βγ} (hf : Filter.Tendsto f F Filter.atBot) (hg : Filter.Tendsto g G Filter.atBot) :
      Filter.Tendsto (Prod.map f g) (F ×ˢ G) Filter.atBot
      theorem Filter.Tendsto.prod_map_prod_atTop {α : Type u_3} {β : Type u_4} {γ : Type u_5} [SemilatticeSup γ] {F : Filter α} {G : Filter β} {f : αγ} {g : βγ} (hf : Filter.Tendsto f F Filter.atTop) (hg : Filter.Tendsto g G Filter.atTop) :
      Filter.Tendsto (Prod.map f g) (F ×ˢ G) Filter.atTop
      theorem Filter.Tendsto.prod_atBot {α : Type u_3} {γ : Type u_5} [SemilatticeInf α] [SemilatticeInf γ] {f : αγ} {g : αγ} (hf : Filter.Tendsto f Filter.atBot Filter.atBot) (hg : Filter.Tendsto g Filter.atBot Filter.atBot) :
      Filter.Tendsto (Prod.map f g) Filter.atBot Filter.atBot
      theorem Filter.Tendsto.prod_atTop {α : Type u_3} {γ : Type u_5} [SemilatticeSup α] [SemilatticeSup γ] {f : αγ} {g : αγ} (hf : Filter.Tendsto f Filter.atTop Filter.atTop) (hg : Filter.Tendsto g Filter.atTop Filter.atTop) :
      Filter.Tendsto (Prod.map f g) Filter.atTop Filter.atTop
      theorem Filter.eventually_atBot_prod_self {α : Type u_3} [SemilatticeInf α] [Nonempty α] {p : α × αProp} :
      (∀ᶠ (x : α × α) in Filter.atBot, p x) a, (k l : α) → k al ap (k, l)
      theorem Filter.eventually_atTop_prod_self {α : Type u_3} [SemilatticeSup α] [Nonempty α] {p : α × αProp} :
      (∀ᶠ (x : α × α) in Filter.atTop, p x) a, (k l : α) → a ka lp (k, l)
      theorem Filter.eventually_atBot_prod_self' {α : Type u_3} [SemilatticeInf α] [Nonempty α] {p : α × αProp} :
      (∀ᶠ (x : α × α) in Filter.atBot, p x) a, (k : α) → k a(l : α) → l ap (k, l)
      theorem Filter.eventually_atTop_prod_self' {α : Type u_3} [SemilatticeSup α] [Nonempty α] {p : α × αProp} :
      (∀ᶠ (x : α × α) in Filter.atTop, p x) a, (k : α) → k a(l : α) → l ap (k, l)
      theorem Filter.eventually_atTop_curry {α : Type u_3} {β : Type u_4} [SemilatticeSup α] [SemilatticeSup β] {p : α × βProp} (hp : ∀ᶠ (x : α × β) in Filter.atTop, p x) :
      ∀ᶠ (k : α) in Filter.atTop, ∀ᶠ (l : β) in Filter.atTop, p (k, l)
      theorem Filter.eventually_atBot_curry {α : Type u_3} {β : Type u_4} [SemilatticeInf α] [SemilatticeInf β] {p : α × βProp} (hp : ∀ᶠ (x : α × β) in Filter.atBot, p x) :
      ∀ᶠ (k : α) in Filter.atBot, ∀ᶠ (l : β) in Filter.atBot, p (k, l)
      theorem Filter.map_atTop_eq_of_gc {α : Type u_3} {β : Type u_4} [SemilatticeSup α] [SemilatticeSup β] {f : αβ} (g : βα) (b' : β) (hf : Monotone f) (gc : ∀ (a : α) (b : β), b b' → (f a b a g b)) (hgi : ∀ (b : β), b b'b f (g b)) :
      Filter.map f Filter.atTop = Filter.atTop

      A function f maps upwards closed sets (atTop sets) to upwards closed sets when it is a Galois insertion. The Galois "insertion" and "connection" is weakened to only require it to be an insertion and a connection above b'.

      theorem Filter.map_atBot_eq_of_gc {α : Type u_3} {β : Type u_4} [SemilatticeInf α] [SemilatticeInf β] {f : αβ} (g : βα) (b' : β) (hf : Monotone f) (gc : ∀ (a : α) (b : β), b b' → (b f a g b a)) (hgi : ∀ (b : β), b b'f (g b) b) :
      Filter.map f Filter.atBot = Filter.atBot
      theorem Filter.map_val_atTop_of_Ici_subset {α : Type u_3} [SemilatticeSup α] {a : α} {s : Set α} (h : Set.Ici a s) :
      Filter.map Subtype.val Filter.atTop = Filter.atTop
      @[simp]
      theorem Filter.map_val_Ici_atTop {α : Type u_3} [SemilatticeSup α] (a : α) :
      Filter.map Subtype.val Filter.atTop = Filter.atTop

      The image of the filter atTop on Ici a under the coercion equals atTop.

      @[simp]
      theorem Filter.map_val_Ioi_atTop {α : Type u_3} [SemilatticeSup α] [NoMaxOrder α] (a : α) :
      Filter.map Subtype.val Filter.atTop = Filter.atTop

      The image of the filter atTop on Ioi a under the coercion equals atTop.

      theorem Filter.atTop_Ioi_eq {α : Type u_3} [SemilatticeSup α] (a : α) :
      Filter.atTop = Filter.comap Subtype.val Filter.atTop

      The atTop filter for an open interval Ioi a comes from the atTop filter in the ambient order.

      theorem Filter.atTop_Ici_eq {α : Type u_3} [SemilatticeSup α] (a : α) :
      Filter.atTop = Filter.comap Subtype.val Filter.atTop

      The atTop filter for an open interval Ici a comes from the atTop filter in the ambient order.

      @[simp]
      theorem Filter.map_val_Iio_atBot {α : Type u_3} [SemilatticeInf α] [NoMinOrder α] (a : α) :
      Filter.map Subtype.val Filter.atBot = Filter.atBot

      The atBot filter for an open interval Iio a comes from the atBot filter in the ambient order.

      theorem Filter.atBot_Iio_eq {α : Type u_3} [SemilatticeInf α] (a : α) :
      Filter.atBot = Filter.comap Subtype.val Filter.atBot

      The atBot filter for an open interval Iio a comes from the atBot filter in the ambient order.

      @[simp]
      theorem Filter.map_val_Iic_atBot {α : Type u_3} [SemilatticeInf α] (a : α) :
      Filter.map Subtype.val Filter.atBot = Filter.atBot

      The atBot filter for an open interval Iic a comes from the atBot filter in the ambient order.

      theorem Filter.atBot_Iic_eq {α : Type u_3} [SemilatticeInf α] (a : α) :
      Filter.atBot = Filter.comap Subtype.val Filter.atBot

      The atBot filter for an open interval Iic a comes from the atBot filter in the ambient order.

      theorem Filter.tendsto_Ioi_atTop {α : Type u_3} {β : Type u_4} [SemilatticeSup α] {a : α} {f : β↑(Set.Ioi a)} {l : Filter β} :
      Filter.Tendsto f l Filter.atTop Filter.Tendsto (fun x => ↑(f x)) l Filter.atTop
      theorem Filter.tendsto_Iio_atBot {α : Type u_3} {β : Type u_4} [SemilatticeInf α] {a : α} {f : β↑(Set.Iio a)} {l : Filter β} :
      Filter.Tendsto f l Filter.atBot Filter.Tendsto (fun x => ↑(f x)) l Filter.atBot
      theorem Filter.tendsto_Ici_atTop {α : Type u_3} {β : Type u_4} [SemilatticeSup α] {a : α} {f : β↑(Set.Ici a)} {l : Filter β} :
      Filter.Tendsto f l Filter.atTop Filter.Tendsto (fun x => ↑(f x)) l Filter.atTop
      theorem Filter.tendsto_Iic_atBot {α : Type u_3} {β : Type u_4} [SemilatticeInf α] {a : α} {f : β↑(Set.Iic a)} {l : Filter β} :
      Filter.Tendsto f l Filter.atBot Filter.Tendsto (fun x => ↑(f x)) l Filter.atBot
      @[simp]
      theorem Filter.tendsto_comp_val_Ioi_atTop {α : Type u_3} {β : Type u_4} [SemilatticeSup α] [NoMaxOrder α] {a : α} {f : αβ} {l : Filter β} :
      Filter.Tendsto (fun x => f x) Filter.atTop l Filter.Tendsto f Filter.atTop l
      @[simp]
      theorem Filter.tendsto_comp_val_Ici_atTop {α : Type u_3} {β : Type u_4} [SemilatticeSup α] {a : α} {f : αβ} {l : Filter β} :
      Filter.Tendsto (fun x => f x) Filter.atTop l Filter.Tendsto f Filter.atTop l
      @[simp]
      theorem Filter.tendsto_comp_val_Iio_atBot {α : Type u_3} {β : Type u_4} [SemilatticeInf α] [NoMinOrder α] {a : α} {f : αβ} {l : Filter β} :
      Filter.Tendsto (fun x => f x) Filter.atBot l Filter.Tendsto f Filter.atBot l
      @[simp]
      theorem Filter.tendsto_comp_val_Iic_atBot {α : Type u_3} {β : Type u_4} [SemilatticeInf α] {a : α} {f : αβ} {l : Filter β} :
      Filter.Tendsto (fun x => f x) Filter.atBot l Filter.Tendsto f Filter.atBot l
      theorem Filter.map_add_atTop_eq_nat (k : ) :
      Filter.map (fun a => a + k) Filter.atTop = Filter.atTop
      theorem Filter.map_sub_atTop_eq_nat (k : ) :
      Filter.map (fun a => a - k) Filter.atTop = Filter.atTop
      theorem Filter.tendsto_add_atTop_nat (k : ) :
      Filter.Tendsto (fun a => a + k) Filter.atTop Filter.atTop
      theorem Filter.tendsto_sub_atTop_nat (k : ) :
      Filter.Tendsto (fun a => a - k) Filter.atTop Filter.atTop
      theorem Filter.tendsto_add_atTop_iff_nat {α : Type u_3} {f : α} {l : Filter α} (k : ) :
      Filter.Tendsto (fun n => f (n + k)) Filter.atTop l Filter.Tendsto f Filter.atTop l
      theorem Filter.map_div_atTop_eq_nat (k : ) (hk : 0 < k) :
      Filter.map (fun a => a / k) Filter.atTop = Filter.atTop
      theorem Filter.tendsto_atTop_atTop_of_monotone' {ι : Type u_1} {α : Type u_3} [Preorder ι] [LinearOrder α] {u : ια} (h : Monotone u) (H : ¬BddAbove (Set.range u)) :
      Filter.Tendsto u Filter.atTop Filter.atTop

      If u is a monotone function with linear ordered codomain and the range of u is not bounded above, then Tendsto u atTop atTop.

      theorem Filter.tendsto_atBot_atBot_of_monotone' {ι : Type u_1} {α : Type u_3} [Preorder ι] [LinearOrder α] {u : ια} (h : Monotone u) (H : ¬BddBelow (Set.range u)) :
      Filter.Tendsto u Filter.atBot Filter.atBot

      If u is a monotone function with linear ordered codomain and the range of u is not bounded below, then Tendsto u atBot atBot.

      theorem Filter.unbounded_of_tendsto_atTop {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeSup α] [Preorder β] [NoMaxOrder β] {f : αβ} (h : Filter.Tendsto f Filter.atTop Filter.atTop) :
      theorem Filter.unbounded_of_tendsto_atBot {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeSup α] [Preorder β] [NoMinOrder β] {f : αβ} (h : Filter.Tendsto f Filter.atTop Filter.atBot) :
      theorem Filter.unbounded_of_tendsto_atTop' {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeInf α] [Preorder β] [NoMaxOrder β] {f : αβ} (h : Filter.Tendsto f Filter.atBot Filter.atTop) :
      theorem Filter.unbounded_of_tendsto_atBot' {α : Type u_3} {β : Type u_4} [Nonempty α] [SemilatticeInf α] [Preorder β] [NoMinOrder β] {f : αβ} (h : Filter.Tendsto f Filter.atBot Filter.atBot) :
      theorem Filter.tendsto_atTop_of_monotone_of_filter {ι : Type u_1} {α : Type u_3} [Preorder ι] [Preorder α] {l : Filter ι} {u : ια} (h : Monotone u) [Filter.NeBot l] (hu : Filter.Tendsto u l Filter.atTop) :
      Filter.Tendsto u Filter.atTop Filter.atTop

      If a monotone function u : ι → α tends to atTop along some non-trivial filter l, then it tends to atTop along atTop.

      theorem Filter.tendsto_atBot_of_monotone_of_filter {ι : Type u_1} {α : Type u_3} [Preorder ι] [Preorder α] {l : Filter ι} {u : ια} (h : Monotone u) [Filter.NeBot l] (hu : Filter.Tendsto u l Filter.atBot) :
      Filter.Tendsto u Filter.atBot Filter.atBot

      If a monotone function u : ι → α tends to atBot along some non-trivial filter l, then it tends to atBot along atBot.

      theorem Filter.tendsto_atTop_of_monotone_of_subseq {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [Preorder ι] [Preorder α] {u : ια} {φ : ι'ι} (h : Monotone u) {l : Filter ι'} [Filter.NeBot l] (H : Filter.Tendsto (u φ) l Filter.atTop) :
      Filter.Tendsto u Filter.atTop Filter.atTop
      theorem Filter.tendsto_atBot_of_monotone_of_subseq {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [Preorder ι] [Preorder α] {u : ια} {φ : ι'ι} (h : Monotone u) {l : Filter ι'} [Filter.NeBot l] (H : Filter.Tendsto (u φ) l Filter.atBot) :
      Filter.Tendsto u Filter.atBot Filter.atBot
      theorem Filter.map_atTop_finset_sum_le_of_sum_eq {α : Type u_3} {β : Type u_4} {γ : Type u_5} [AddCommMonoid α] {f : βα} {g : γα} (h_eq : ∀ (u : Finset γ), v, ∀ (v' : Finset β), v v'u', u u' (Finset.sum u' fun x => g x) = Finset.sum v' fun b => f b) :
      Filter.map (fun s => Finset.sum s fun b => f b) Filter.atTop Filter.map (fun s => Finset.sum s fun x => g x) Filter.atTop

      Let f and g be two maps to the same commutative additive monoid. This lemma gives a sufficient condition for comparison of the filter atTop.map (fun s ↦ ∑ b in s, f b) with atTop.map (fun s ↦ ∑ b in s, g b). This is useful to compare the set of limit points of ∑ b in s, f b as s → atTop with the similar set for g.

      abbrev Filter.map_atTop_finset_sum_le_of_sum_eq.match_1 {α : Type u_3} {β : Type u_1} {γ : Type u_2} [AddCommMonoid α] {f : βα} {g : γα} (b : Finset γ) (motive : (v, ∀ (v' : Finset β), v v'u', b u' (Finset.sum u' fun x => g x) = Finset.sum v' fun b => f b) → Prop) :
      (x : v, ∀ (v' : Finset β), v v'u', b u' (Finset.sum u' fun x => g x) = Finset.sum v' fun b => f b) → ((v : Finset β) → (hv : ∀ (v' : Finset β), v v'u', b u' (Finset.sum u' fun x => g x) = Finset.sum v' fun b => f b) → motive (_ : v, ∀ (v' : Finset β), v v'u', b u' (Finset.sum u' fun x => g x) = Finset.sum v' fun b => f b)) → motive x
      Equations
      Instances For
        theorem Filter.map_atTop_finset_prod_le_of_prod_eq {α : Type u_3} {β : Type u_4} {γ : Type u_5} [CommMonoid α] {f : βα} {g : γα} (h_eq : ∀ (u : Finset γ), v, ∀ (v' : Finset β), v v'u', u u' (Finset.prod u' fun x => g x) = Finset.prod v' fun b => f b) :
        Filter.map (fun s => Finset.prod s fun b => f b) Filter.atTop Filter.map (fun s => Finset.prod s fun x => g x) Filter.atTop

        Let f and g be two maps to the same commutative monoid. This lemma gives a sufficient condition for comparison of the filter atTop.map (fun s ↦ ∏ b in s, f b) with atTop.map (fun s ↦ ∏ b in s, g b). This is useful to compare the set of limit points of Π b in s, f b as s → atTop with the similar set for g.

        theorem Filter.HasAntitoneBasis.eventually_subset {ι : Type u_1} {α : Type u_3} [Preorder ι] {l : Filter α} {s : ιSet α} (hl : Filter.HasAntitoneBasis l s) {t : Set α} (ht : t l) :
        ∀ᶠ (i : ι) in Filter.atTop, s i t
        theorem Filter.HasAntitoneBasis.tendsto {ι : Type u_1} {α : Type u_3} [Preorder ι] {l : Filter α} {s : ιSet α} (hl : Filter.HasAntitoneBasis l s) {φ : ια} (h : ∀ (i : ι), φ i s i) :
        Filter.Tendsto φ Filter.atTop l
        theorem Filter.HasAntitoneBasis.comp_mono {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [SemilatticeSup ι] [Nonempty ι] [Preorder ι'] {l : Filter α} {s : ι'Set α} (hs : Filter.HasAntitoneBasis l s) {φ : ιι'} (φ_mono : Monotone φ) (hφ : Filter.Tendsto φ Filter.atTop Filter.atTop) :
        theorem Filter.HasAntitoneBasis.comp_strictMono {α : Type u_3} {l : Filter α} {s : Set α} (hs : Filter.HasAntitoneBasis l s) {φ : } (hφ : StrictMono φ) :
        theorem Filter.HasAntitoneBasis.subbasis_with_rel {α : Type u_3} {f : Filter α} {s : Set α} (hs : Filter.HasAntitoneBasis f s) {r : Prop} (hr : ∀ (m : ), ∀ᶠ (n : ) in Filter.atTop, r m n) :
        φ, StrictMono φ (m n : ⦄ → m < nr (φ m) (φ n)) Filter.HasAntitoneBasis f (s φ)

        Given an antitone basis s : ℕ → Set α of a filter, extract an antitone subbasis s ∘ φ, φ : ℕ → ℕ, such that m < n implies r (φ m) (φ n). This lemma can be used to extract an antitone basis with basis sets decreasing "sufficiently fast".

        theorem Filter.exists_seq_tendsto {α : Type u_3} (f : Filter α) [Filter.IsCountablyGenerated f] [Filter.NeBot f] :
        x, Filter.Tendsto x Filter.atTop f

        If f is a nontrivial countably generated filter, then there exists a sequence that converges to f.

        theorem Filter.exists_seq_monotone_tendsto_atTop_atTop (α : Type u_6) [SemilatticeSup α] [Nonempty α] [Filter.IsCountablyGenerated Filter.atTop] :
        xs, Monotone xs Filter.Tendsto xs Filter.atTop Filter.atTop
        theorem Filter.exists_seq_antitone_tendsto_atTop_atBot (α : Type u_6) [SemilatticeInf α] [Nonempty α] [h2 : Filter.IsCountablyGenerated Filter.atBot] :
        xs, Antitone xs Filter.Tendsto xs Filter.atTop Filter.atBot
        theorem Filter.tendsto_iff_seq_tendsto {α : Type u_3} {β : Type u_4} {f : αβ} {k : Filter α} {l : Filter β} [Filter.IsCountablyGenerated k] :
        Filter.Tendsto f k l ∀ (x : α), Filter.Tendsto x Filter.atTop kFilter.Tendsto (f x) Filter.atTop l

        An abstract version of continuity of sequentially continuous functions on metric spaces: if a filter k is countably generated then Tendsto f k l iff for every sequence u converging to k, f ∘ u tends to l.

        theorem Filter.tendsto_of_seq_tendsto {α : Type u_3} {β : Type u_4} {f : αβ} {k : Filter α} {l : Filter β} [Filter.IsCountablyGenerated k] :
        (∀ (x : α), Filter.Tendsto x Filter.atTop kFilter.Tendsto (f x) Filter.atTop l) → Filter.Tendsto f k l
        theorem Filter.tendsto_iff_forall_eventually_mem {ι : Type u_1} {α : Type u_3} {x : ια} {f : Filter α} {l : Filter ι} :
        Filter.Tendsto x l f ∀ (s : Set α), s f∀ᶠ (n : ι) in l, x n s
        theorem Filter.not_tendsto_iff_exists_frequently_nmem {ι : Type u_1} {α : Type u_3} {x : ια} {f : Filter α} {l : Filter ι} :
        ¬Filter.Tendsto x l f s, s f ∃ᶠ (n : ι) in l, ¬x n s
        theorem Filter.frequently_iff_seq_frequently {ι : Type u_6} {l : Filter ι} {p : ιProp} [hl : Filter.IsCountablyGenerated l] :
        (∃ᶠ (n : ι) in l, p n) x, Filter.Tendsto x Filter.atTop l ∃ᶠ (n : ) in Filter.atTop, p (x n)
        theorem Filter.eventually_iff_seq_eventually {ι : Type u_6} {l : Filter ι} {p : ιProp} [hl : Filter.IsCountablyGenerated l] :
        (∀ᶠ (n : ι) in l, p n) ∀ (x : ι), Filter.Tendsto x Filter.atTop l∀ᶠ (n : ) in Filter.atTop, p (x n)
        theorem Filter.subseq_forall_of_frequently {ι : Type u_6} {x : ι} {p : ιProp} {l : Filter ι} (h_tendsto : Filter.Tendsto x Filter.atTop l) (h : ∃ᶠ (n : ) in Filter.atTop, p (x n)) :
        ns, Filter.Tendsto (fun n => x (ns n)) Filter.atTop l ((n : ) → p (x (ns n)))
        theorem Filter.exists_seq_forall_of_frequently {ι : Type u_6} {l : Filter ι} {p : ιProp} [hl : Filter.IsCountablyGenerated l] (h : ∃ᶠ (n : ι) in l, p n) :
        ns, Filter.Tendsto ns Filter.atTop l ((n : ) → p (ns n))
        theorem Filter.tendsto_of_subseq_tendsto {α : Type u_6} {ι : Type u_7} {x : ια} {f : Filter α} {l : Filter ι} [Filter.IsCountablyGenerated l] (hxy : ∀ (ns : ι), Filter.Tendsto ns Filter.atTop lms, Filter.Tendsto (fun n => x (ns (ms n))) Filter.atTop f) :

        A sequence converges if every subsequence has a convergent subsequence.

        theorem Filter.subseq_tendsto_of_neBot {α : Type u_3} {f : Filter α} [Filter.IsCountablyGenerated f] {u : α} (hx : Filter.NeBot (f Filter.map u Filter.atTop)) :
        θ, StrictMono θ Filter.Tendsto (u θ) Filter.atTop f
        theorem exists_lt_mul_self {R : Type u_6} [LinearOrderedSemiring R] (a : R) :
        x, x 0 a < x * x
        theorem exists_le_mul_self {R : Type u_6} [LinearOrderedSemiring R] (a : R) :
        x, x 0 a x * x
        theorem Monotone.piecewise_eventually_eq_iUnion {ι : Type u_1} {α : Type u_3} {β : αType u_6} [Preorder ι] {s : ιSet α} [(i : ι) → DecidablePred fun x => x s i] [DecidablePred fun x => x ⋃ (i : ι), s i] (hs : Monotone s) (f : (a : α) → β a) (g : (a : α) → β a) (a : α) :
        ∀ᶠ (i : ι) in Filter.atTop, Set.piecewise (s i) f g a = Set.piecewise (⋃ (i : ι), s i) f g a
        theorem Antitone.piecewise_eventually_eq_iInter {ι : Type u_1} {α : Type u_3} {β : αType u_6} [Preorder ι] {s : ιSet α} [(i : ι) → DecidablePred fun x => x s i] [DecidablePred fun x => x ⋂ (i : ι), s i] (hs : Antitone s) (f : (a : α) → β a) (g : (a : α) → β a) (a : α) :
        ∀ᶠ (i : ι) in Filter.atTop, Set.piecewise (s i) f g a = Set.piecewise (⋂ (i : ι), s i) f g a
        theorem Function.Injective.map_atTop_finset_sum_eq {α : Type u_3} {β : Type u_4} {γ : Type u_5} [AddCommMonoid α] {g : γβ} (hg : Function.Injective g) {f : βα} (hf : ∀ (x : β), ¬x Set.range gf x = 0) :
        Filter.map (fun s => Finset.sum s fun i => f (g i)) Filter.atTop = Filter.map (fun s => Finset.sum s fun i => f i) Filter.atTop

        Let g : γ → β be an injective function and f : β → α be a function from the codomain of g to an additive commutative monoid. Suppose that f x = 0 outside of the range of g. Then the filters atTop.map (fun s ↦ ∑ i in s, f (g i)) and atTop.map (fun s ↦ ∑ i in s, f i) coincide.

        This lemma is used to prove the equality ∑' x, f (g x) = ∑' y, f y under the same assumptions.

        theorem Function.Injective.map_atTop_finset_prod_eq {α : Type u_3} {β : Type u_4} {γ : Type u_5} [CommMonoid α] {g : γβ} (hg : Function.Injective g) {f : βα} (hf : ∀ (x : β), ¬x Set.range gf x = 1) :
        Filter.map (fun s => Finset.prod s fun i => f (g i)) Filter.atTop = Filter.map (fun s => Finset.prod s fun i => f i) Filter.atTop

        Let g : γ → β be an injective function and f : β → α be a function from the codomain of g to a commutative monoid. Suppose that f x = 1 outside of the range of g. Then the filters atTop.map (fun s ↦ ∏ i in s, f (g i)) and atTop.map (fun s ↦ ∏ i in s, f i) coincide.

        The additive version of this lemma is used to prove the equality ∑' x, f (g x) = ∑' y, f y under the same assumptions.