Cyclotomic extensions #
Let A and B be commutative rings with Algebra A B. For S : Set ℕ+, we define a class
IsCyclotomicExtension S A B expressing the fact that B is obtained from A by adding n-th
primitive roots of unity, for all n ∈ S.
Main definitions #
IsCyclotomicExtension S A B: means thatBis obtained fromAby addingn-th primitive roots of unity, for alln ∈ S.CyclotomicField: givenn : ℕ+and a fieldK, we defineCyclotomicField n Kas the splitting field ofcyclotomic n K. Ifnis nonzero inK, it has the instanceIsCyclotomicExtension {n} K (CyclotomicField n K).CyclotomicRing: ifAis a domain with fraction fieldKandn : ℕ+, we defineCyclotomicRing n A Kas theA-subalgebra ofCyclotomicField n Kgenerated by the roots ofX ^ n - 1. Ifnis nonzero inA, it has the instanceIsCyclotomicExtension {n} A (CyclotomicRing n A K).
Main results #
IsCyclotomicExtension.trans: ifIsCyclotomicExtension S A BandIsCyclotomicExtension T B C, thenIsCyclotomicExtension (S ∪ T) A CifFunction.Injective (algebraMap B C).IsCyclotomicExtension.union_right: givenIsCyclotomicExtension (S ∪ T) A B, thenIsCyclotomicExtension T (adjoin A { b : B | ∃ a : ℕ+, a ∈ S ∧ b ^ (a : ℕ) = 1 }) B.IsCyclotomicExtension.union_left: givenIsCyclotomicExtension T A BandS ⊆ T, thenIsCyclotomicExtension S A (adjoin A { b : B | ∃ a : ℕ+, a ∈ S ∧ b ^ (a : ℕ) = 1 }).IsCyclotomicExtension.finite: ifSis finite andIsCyclotomicExtension S A B, thenBis a finiteA-algebra.IsCyclotomicExtension.numberField: a finite cyclotomic extension of a number field is a number field.IsCyclotomicExtension.splitting_field_X_pow_sub_one: ifIsCyclotomicExtension {n} K L, thenLis the splitting field ofX ^ n - 1.IsCyclotomicExtension.splitting_field_cyclotomic: ifIsCyclotomicExtension {n} K L, thenLis the splitting field ofcyclotomic n K.
Implementation details #
Our definition of IsCyclotomicExtension is very general, to allow rings of any characteristic
and infinite extensions, but it will mainly be used in the case S = {n} and for integral domains.
All results are in the IsCyclotomicExtension namespace.
Note that some results, for example IsCyclotomicExtension.trans,
IsCyclotomicExtension.finite, IsCyclotomicExtension.numberField,
IsCyclotomicExtension.finiteDimensional, IsCyclotomicExtension.isGalois and
CyclotomicField.algebraBase are lemmas, but they can be made local instances. Some of them are
included in the Cyclotomic locale.
- exists_prim_root : ∀ {n : ℕ+}, n ∈ S → ∃ r, IsPrimitiveRoot r ↑n
For all
n ∈ S, there exists a primitiven-th root of unity inB. The
n-th roots of unity, forn ∈ S, generateBas anA-algebra.
Given an A-algebra B and S : Set ℕ+, we define IsCyclotomicExtension S A B requiring
that there is an n-th primitive root of unity in B for all n ∈ S and that B is generated
over A by the roots of X ^ n - 1.
Instances
A reformulation of IsCyclotomicExtension that uses ⊤.
A reformulation of IsCyclotomicExtension in the case S is a singleton.
If IsCyclotomicExtension ∅ A B, then the image of A in B equals B.
If IsCyclotomicExtension {1} A B, then the image of A in B equals B.
If (⊥ : SubAlgebra A B) = ⊤, then IsCyclotomicExtension ∅ A B.
Transitivity of cyclotomic extensions.
If B is a cyclotomic extension of A given by roots of unity of order in S ∪ T, then B
is a cyclotomic extension of adjoin A { b : B | ∃ a : ℕ+, a ∈ S ∧ b ^ (a : ℕ) = 1 } given by
roots of unity of order in T.
If B is a cyclotomic extension of A given by roots of unity of order in T and S ⊆ T,
then adjoin A { b : B | ∃ a : ℕ+, a ∈ S ∧ b ^ (a : ℕ) = 1 } is a cyclotomic extension of B
given by roots of unity of order in S.
If ∀ s ∈ S, n ∣ s and S is not empty, then IsCyclotomicExtension S A B implies
IsCyclotomicExtension (S ∪ {n}) A B.
If ∀ s ∈ S, n ∣ s and S is not empty, then IsCyclotomicExtension S A B if and only if
IsCyclotomicExtension (S ∪ {n}) A B.
IsCyclotomicExtension S A B is equivalent to IsCyclotomicExtension (S ∪ {1}) A B.
If (⊥ : SubAlgebra A B) = ⊤, then IsCyclotomicExtension {1} A B.
If Function.Surjective (algebraMap A B), then IsCyclotomicExtension {1} A B.
Given (f : B ≃ₐ[A] C), if IsCyclotomicExtension S A B then
IsCyclotomicExtension S A C.
If S is finite and IsCyclotomicExtension S A B, then B is a finite A-algebra.
A cyclotomic finite extension of a number field is a number field.
A finite cyclotomic extension of an integral noetherian domain is integral
If S is finite and IsCyclotomicExtension S K A, then finiteDimensional K A.
A cyclotomic extension splits X ^ n - 1 if n ∈ S.
A cyclotomic extension splits cyclotomic n K if n ∈ S and ne_zero (n : K).
If IsCyclotomicExtension {n} K L, then L is the splitting field of X ^ n - 1.
Any two n-th cyclotomic extensions are isomorphic.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If IsCyclotomicExtension {n} K L, then L is the splitting field of cyclotomic n K.
Given n : ℕ+ and a field K, we define CyclotomicField n K as the
splitting field of cyclotomic n K. If n is nonzero in K, it has
the instance IsCyclotomicExtension {n} K (CyclotomicField n K).
Equations
- CyclotomicField n K = Polynomial.SplittingField (Polynomial.cyclotomic (↑n) K)
Instances For
Equations
- CyclotomicField.instFieldCyclotomicField n K = id inferInstance
Equations
- CyclotomicField.algebra n K = id inferInstance
Equations
- CyclotomicField.instInhabitedCyclotomicField n K = id inferInstance
Equations
- One or more equations did not get rendered due to their size.
If K is the fraction field of A, the A-algebra structure on CyclotomicField n K.
Equations
Equations
Equations
- One or more equations did not get rendered due to their size.
If A is a domain with fraction field K and n : ℕ+, we define CyclotomicRing n A K as
the A-subalgebra of CyclotomicField n K generated by the roots of X ^ n - 1. If n
is nonzero in A, it has the instance IsCyclotomicExtension {n} A (CyclotomicRing n A K).
Equations
- CyclotomicRing n A K = { x // x ∈ Algebra.adjoin A {b | b ^ ↑n = 1} }
Instances For
Equations
- CyclotomicRing.instCommRingCyclotomicRing n A K = id inferInstance
Equations
- CyclotomicRing.instInhabitedCyclotomicRing n A K = id inferInstance
The A-algebra structure on CyclotomicRing n A K.
Equations
- CyclotomicRing.algebraBase n A K = Subalgebra.algebra (Algebra.adjoin A {b | b ^ ↑n = 1})
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Algebraically closed fields are S-cyclotomic extensions over themselves if
NeZero ((a : ℕ) : K)) for all a ∈ S.