Documentation

Mathlib.LinearAlgebra.FiniteDimensional

Finite dimensional vector spaces #

Definition and basic properties of finite dimensional vector spaces, of their dimensions, and of linear maps on such spaces.

Main definitions #

Assume V is a vector space over a division ring K. There are (at least) three equivalent definitions of finite-dimensionality of V:

We introduce a typeclass FiniteDimensional K V capturing this property. For ease of transfer of proof, it is defined using the second point of view, i.e., as Finite. However, we prove that all these points of view are equivalent, with the following lemmas (in the namespace FiniteDimensional):

We make use of finrank, the dimension of a finite dimensional space, returning a Nat, as opposed to Module.rank, which returns a Cardinal. When the space has infinite dimension, its finrank is by convention set to 0. finrank is not defined using FiniteDimensional. For basic results that do not need the FiniteDimensional class, import Mathlib.LinearAlgebra.Finrank.

Preservation of finite-dimensionality and formulas for the dimension are given for

Basic properties of linear maps of a finite-dimensional vector space are given. Notably, the equivalence of injectivity and surjectivity is proved in LinearMap.injective_iff_surjective, and the equivalence between left-inverse and right-inverse in LinearMap.mul_eq_one_comm and LinearMap.comp_eq_id_comm.

Implementation notes #

Most results are deduced from the corresponding results for the general dimension (as a cardinal), in Mathlib.LinearAlgebra.Dimension. Not all results have been ported yet.

You should not assume that there has been any effort to state lemmas as generally as possible.

One of the characterizations of finite-dimensionality is in terms of finite generation. This property is currently defined only for submodules, so we express it through the fact that the maximal submodule (which, as a set, coincides with the whole space) is finitely generated. This is not very convenient to use, although there are some helper functions. However, this becomes very convenient when speaking of submodules which are finite-dimensional, as this notion coincides with the fact that the submodule is finitely generated (as a submodule of the whole space). This equivalence is proved in Submodule.fg_iff_finiteDimensional.

@[reducible]
def FiniteDimensional (K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] :

FiniteDimensional vector spaces are defined to be finite modules. Use FiniteDimensional.of_fintype_basis to prove finite dimension from another definition.

Equations
Instances For
    theorem FiniteDimensional.of_injective {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V₂ : Type v'} [AddCommGroup V₂] [Module K V₂] (f : V →ₗ[K] V₂) (w : Function.Injective f) [FiniteDimensional K V₂] :

    If the codomain of an injective linear map is finite dimensional, the domain must be as well.

    theorem FiniteDimensional.of_surjective {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V₂ : Type v'} [AddCommGroup V₂] [Module K V₂] (f : V →ₗ[K] V₂) (w : Function.Surjective f) [FiniteDimensional K V] :

    If the domain of a surjective linear map is finite dimensional, the codomain must be as well.

    instance FiniteDimensional.finiteDimensional_pi' (K : Type u) [DivisionRing K] {ι : Type u_1} [Finite ι] (M : ιType u_2) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module K (M i)] [I : ∀ (i : ι), FiniteDimensional K (M i)] :
    FiniteDimensional K ((i : ι) → M i)
    Equations
    noncomputable def FiniteDimensional.fintypeOfFintype (K : Type u) (V : Type v) [DivisionRing K] [AddCommGroup V] [Module K V] [Fintype K] [FiniteDimensional K V] :

    A finite dimensional vector space over a finite field is finite

    Equations
    Instances For
      theorem FiniteDimensional.of_fintype_basis {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type w} [Finite ι] (h : Basis ι K V) :

      If a vector space has a finite basis, then it is finite-dimensional.

      noncomputable def FiniteDimensional.fintypeBasisIndex {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type u_1} [FiniteDimensional K V] (b : Basis ι K V) :

      If a vector space is FiniteDimensional, all bases are indexed by a finite type

      Equations
      Instances For

        If a vector space is FiniteDimensional, Basis.ofVectorSpace is indexed by a finite type.

        Equations
        • FiniteDimensional.instFintypeElemOfVectorSpaceIndex = inferInstance
        theorem FiniteDimensional.of_finite_basis {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type w} {s : Set ι} (h : Basis (s) K V) (hs : Set.Finite s) :

        If a vector space has a basis indexed by elements of a finite set, then it is finite-dimensional.

        A subspace of a finite-dimensional space is also finite-dimensional.

        Equations

        In a finite-dimensional space, its dimension (seen as a cardinal) coincides with its finrank. This is a copy of finrank_eq_rank _ _ which creates easier typeclass searches.

        We can infer FiniteDimensional K V in the presence of [Fact (finrank K V = n + 1)]. Declare this as a local instance where needed.

        If a vector space is finite-dimensional, then the cardinality of any basis is equal to its finrank.

        noncomputable def Basis.unique {K : Type u} [DivisionRing K] {ι : Type u_1} (b : Basis ι K K) :

        Given a basis of a division ring over itself indexed by a type ι, then ι is Unique.

        Equations
        Instances For
          noncomputable def FiniteDimensional.finBasis (K : Type u) (V : Type v) [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] :

          A finite dimensional vector space has a basis indexed by Fin (finrank K V).

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def FiniteDimensional.finBasisOfFinrankEq (K : Type u) (V : Type v) [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {n : } (hn : FiniteDimensional.finrank K V = n) :
            Basis (Fin n) K V

            An n-dimensional vector space has a basis indexed by Fin n.

            Equations
            Instances For
              noncomputable def FiniteDimensional.basisUnique {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (ι : Type u_1) [Unique ι] (h : FiniteDimensional.finrank K V = 1) :
              Basis ι K V

              A module with dimension 1 has a basis with one element.

              Equations
              Instances For
                @[simp]
                theorem FiniteDimensional.basisUnique.repr_eq_zero_iff {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type u_1} [Unique ι] {h : FiniteDimensional.finrank K V = 1} {v : V} {i : ι} :
                ↑((FiniteDimensional.basisUnique ι h).repr v) i = 0 v = 0
                theorem LinearIndependent.finite {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {b : Set V} (h : LinearIndependent K fun x => x) :

                A finite dimensional space has positive finrank iff it has a nonzero element.

                A finite dimensional space has positive finrank iff it is nontrivial.

                A nontrivial finite dimensional space has positive finrank.

                A finite dimensional space has zero finrank iff it is a subsingleton. This is the finrank version of rank_zero_iff.

                If a submodule has maximal dimension in a finite dimensional space, then it is equal to the whole space.

                theorem FiniteDimensional.span_of_finite (K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {A : Set V} (hA : Set.Finite A) :

                The submodule generated by a finite set is finite-dimensional.

                instance FiniteDimensional.span_singleton (K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (x : V) :

                The submodule generated by a single element is finite-dimensional.

                Equations
                instance FiniteDimensional.span_finset (K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s : Finset V) :

                The submodule generated by a finset is finite-dimensional.

                Equations

                Pushforwards of finite-dimensional submodules are finite-dimensional.

                Equations
                • One or more equations did not get rendered due to their size.
                noncomputable def CompleteLattice.Independent.fintypeNeBotOfFiniteDimensional {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {ι : Type w} {p : ιSubmodule K V} (hp : CompleteLattice.Independent p) :
                Fintype { i // p i }

                If p is an independent family of subspaces of a finite-dimensional space V, then the number of nontrivial subspaces in the family p is finite.

                Equations
                Instances For

                  If p is an independent family of subspaces of a finite-dimensional space V, then the number of nontrivial subspaces in the family p is bounded above by the dimension of V.

                  Note that the Fintype hypothesis required here can be provided by CompleteLattice.Independent.fintypeNeBotOfFiniteDimensional.

                  theorem FiniteDimensional.exists_nontrivial_relation_of_rank_lt_card {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {t : Finset V} (h : FiniteDimensional.finrank K V < Finset.card t) :
                  f, (Finset.sum t fun e => f e e) = 0 x, x t f x 0

                  If a finset has cardinality larger than the dimension of the space, then there is a nontrivial linear relation amongst its elements.

                  theorem FiniteDimensional.exists_nontrivial_relation_sum_zero_of_rank_succ_lt_card {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {t : Finset V} (h : FiniteDimensional.finrank K V + 1 < Finset.card t) :
                  f, (Finset.sum t fun e => f e e) = 0 (Finset.sum t fun e => f e) = 0 x, x t f x 0

                  If a finset has cardinality larger than finrank + 1, then there is a nontrivial linear relation amongst its elements, such that the coefficients of the relation sum to zero.

                  theorem FiniteDimensional.exists_relation_sum_zero_pos_coefficient_of_rank_succ_lt_card {L : Type u_1} [LinearOrderedField L] {W : Type v} [AddCommGroup W] [Module L W] [FiniteDimensional L W] {t : Finset W} (h : FiniteDimensional.finrank L W + 1 < Finset.card t) :
                  f, (Finset.sum t fun e => f e e) = 0 (Finset.sum t fun e => f e) = 0 x, x t 0 < f x

                  A slight strengthening of exists_nontrivial_relation_sum_zero_of_rank_succ_lt_card available when working over an ordered field: we can ensure a positive coefficient, not just a nonzero coefficient.

                  @[simp]
                  theorem FiniteDimensional.basisSingleton_repr_apply {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (ι : Type u_1) [Unique ι] (h : FiniteDimensional.finrank K V = 1) (v : V) (hv : v 0) (w : V) :
                  (FiniteDimensional.basisSingleton ι h v hv).repr w = fun₀ | default => ↑((FiniteDimensional.basisUnique ι h).repr w) default / ↑((FiniteDimensional.basisUnique ι h).repr v) default
                  noncomputable def FiniteDimensional.basisSingleton {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (ι : Type u_1) [Unique ι] (h : FiniteDimensional.finrank K V = 1) (v : V) (hv : v 0) :
                  Basis ι K V

                  In a vector space with dimension 1, each set {v} is a basis for v ≠ 0.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem FiniteDimensional.basisSingleton_apply {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (ι : Type u_1) [Unique ι] (h : FiniteDimensional.finrank K V = 1) (v : V) (hv : v 0) (i : ι) :
                    @[simp]
                    theorem FiniteDimensional.range_basisSingleton {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (ι : Type u_1) [Unique ι] (h : FiniteDimensional.finrank K V = 1) (v : V) (hv : v 0) :
                    theorem finiteDimensional_of_rank_eq_nat {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {n : } (h : Module.rank K V = n) :
                    theorem bot_eq_top_of_rank_eq_zero {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : Module.rank K V = 0) :
                    @[simp]
                    theorem rank_eq_zero {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {S : Submodule K V} :
                    Module.rank K { x // x S } = 0 S =
                    @[simp]
                    theorem finrank_eq_zero {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {S : Submodule K V} [FiniteDimensional K { x // x S }] :
                    FiniteDimensional.finrank K { x // x S } = 0 S =

                    A submodule is finitely generated if and only if it is finite-dimensional

                    theorem Submodule.finiteDimensional_of_le {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {S₁ : Submodule K V} {S₂ : Submodule K V} [FiniteDimensional K { x // x S₂ }] (h : S₁ S₂) :
                    FiniteDimensional K { x // x S₁ }

                    A submodule contained in a finite-dimensional submodule is finite-dimensional.

                    instance Submodule.finiteDimensional_inf_left {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (S₁ : Submodule K V) (S₂ : Submodule K V) [FiniteDimensional K { x // x S₁ }] :
                    FiniteDimensional K { x // x S₁ S₂ }

                    The inf of two submodules, the first finite-dimensional, is finite-dimensional.

                    Equations
                    instance Submodule.finiteDimensional_inf_right {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (S₁ : Submodule K V) (S₂ : Submodule K V) [FiniteDimensional K { x // x S₂ }] :
                    FiniteDimensional K { x // x S₁ S₂ }

                    The inf of two submodules, the second finite-dimensional, is finite-dimensional.

                    Equations
                    instance Submodule.finiteDimensional_sup {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (S₁ : Submodule K V) (S₂ : Submodule K V) [h₁ : FiniteDimensional K { x // x S₁ }] [h₂ : FiniteDimensional K { x // x S₂ }] :
                    FiniteDimensional K { x // x S₁ S₂ }

                    The sup of two finite-dimensional submodules is finite-dimensional.

                    Equations
                    instance Submodule.finiteDimensional_finset_sup {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type u_1} (s : Finset ι) (S : ιSubmodule K V) [∀ (i : ι), FiniteDimensional K { x // x S i }] :

                    The submodule generated by a finite supremum of finite dimensional submodules is finite-dimensional.

                    Note that strictly this only needs ∀ i ∈ s, FiniteDimensional K (S i), but that doesn't work well with typeclass search.

                    Equations
                    instance Submodule.finiteDimensional_iSup {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Sort u_1} [Finite ι] (S : ιSubmodule K V) [∀ (i : ι), FiniteDimensional K { x // x S i }] :
                    FiniteDimensional K { x // x ⨆ (i : ι), S i }

                    The submodule generated by a supremum of finite dimensional submodules, indexed by a finite sort is finite-dimensional.

                    Equations

                    In a finite-dimensional vector space, the dimensions of a submodule and of the corresponding quotient add up to the dimension of the space.

                    theorem Submodule.finrank_lt {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {s : Submodule K V} (h : s < ) :

                    The dimension of a strict submodule is strictly bounded by the dimension of the ambient space.

                    theorem Submodule.finrank_sup_add_finrank_inf_eq {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s : Submodule K V) (t : Submodule K V) [FiniteDimensional K { x // x s }] [FiniteDimensional K { x // x t }] :

                    The sum of the dimensions of s + t and s ∩ t is the sum of the dimensions of s and t

                    theorem Submodule.finrank_add_le_finrank_add_finrank {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s : Submodule K V) (t : Submodule K V) [FiniteDimensional K { x // x s }] [FiniteDimensional K { x // x t }] :
                    theorem Submodule.eq_top_of_disjoint {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (s : Submodule K V) (t : Submodule K V) (hdim : FiniteDimensional.finrank K { x // x s } + FiniteDimensional.finrank K { x // x t } = FiniteDimensional.finrank K V) (hdisjoint : Disjoint s t) :
                    s t =
                    theorem LinearEquiv.finiteDimensional {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V₂ : Type v'} [AddCommGroup V₂] [Module K V₂] (f : V ≃ₗ[K] V₂) [FiniteDimensional K V] :

                    Finite dimensionality is preserved under linear equivalence.

                    theorem FiniteDimensional.eq_of_le_of_finrank_le {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {S₁ : Submodule K V} {S₂ : Submodule K V} [FiniteDimensional K { x // x S₂ }] (hle : S₁ S₂) (hd : FiniteDimensional.finrank K { x // x S₂ } FiniteDimensional.finrank K { x // x S₁ }) :
                    S₁ = S₂
                    theorem FiniteDimensional.eq_of_le_of_finrank_eq {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {S₁ : Submodule K V} {S₂ : Submodule K V} [FiniteDimensional K { x // x S₂ }] (hle : S₁ S₂) (hd : FiniteDimensional.finrank K { x // x S₁ } = FiniteDimensional.finrank K { x // x S₂ }) :
                    S₁ = S₂

                    If a submodule is less than or equal to a finite-dimensional submodule with the same dimension, they are equal.

                    noncomputable def FiniteDimensional.LinearEquiv.quotEquivOfEquiv {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V₂ : Type v'} [AddCommGroup V₂] [Module K V₂] [FiniteDimensional K V] [FiniteDimensional K V₂] {p : Subspace K V} {q : Subspace K V₂} (f₁ : { x // x p } ≃ₗ[K] { x // x q }) (f₂ : V ≃ₗ[K] V₂) :
                    (V p) ≃ₗ[K] V₂ q

                    Given isomorphic subspaces p q of vector spaces V and V₁ respectively, p.quotient is isomorphic to q.quotient.

                    Equations
                    Instances For
                      noncomputable def FiniteDimensional.LinearEquiv.quotEquivOfQuotEquiv {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {p : Subspace K V} {q : Subspace K V} (f : (V p) ≃ₗ[K] { x // x q }) :
                      (V q) ≃ₗ[K] { x // x p }

                      Given the subspaces p q, if p.quotient ≃ₗ[K] q, then q.quotient ≃ₗ[K] p

                      Equations
                      Instances For

                        On a finite-dimensional space, an injective linear map is surjective.

                        theorem LinearMap.finiteDimensional_of_surjective {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V₂ : Type v'} [AddCommGroup V₂] [Module K V₂] [FiniteDimensional K V] (f : V →ₗ[K] V₂) (hf : LinearMap.range f = ) :

                        The image under an onto linear map of a finite-dimensional space is also finite-dimensional.

                        instance LinearMap.finiteDimensional_range {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V₂ : Type v'} [AddCommGroup V₂] [Module K V₂] [FiniteDimensional K V] (f : V →ₗ[K] V₂) :

                        The range of a linear map defined on a finite-dimensional space is also finite-dimensional.

                        Equations

                        On a finite-dimensional space, a linear map is injective if and only if it is surjective.

                        theorem LinearMap.mul_eq_one_of_mul_eq_one {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : V →ₗ[K] V} {g : V →ₗ[K] V} (hfg : f * g = 1) :
                        g * f = 1

                        In a finite-dimensional space, if linear maps are inverse to each other on one side then they are also inverse to each other on the other side.

                        theorem LinearMap.mul_eq_one_comm {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : V →ₗ[K] V} {g : V →ₗ[K] V} :
                        f * g = 1 g * f = 1

                        In a finite-dimensional space, linear maps are inverse to each other on one side if and only if they are inverse to each other on the other side.

                        theorem LinearMap.comp_eq_id_comm {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : V →ₗ[K] V} {g : V →ₗ[K] V} :
                        LinearMap.comp f g = LinearMap.id LinearMap.comp g f = LinearMap.id

                        In a finite-dimensional space, linear maps are inverse to each other on one side if and only if they are inverse to each other on the other side.

                        rank-nullity theorem : the dimensions of the kernel and the range of a linear map add up to the dimension of the source space.

                        noncomputable def LinearEquiv.ofInjectiveEndo {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V →ₗ[K] V) (h_inj : Function.Injective f) :

                        The linear equivalence corresponding to an injective endomorphism.

                        Equations
                        Instances For
                          @[simp]
                          theorem LinearEquiv.coe_ofInjectiveEndo {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V →ₗ[K] V) (h_inj : Function.Injective f) :
                          ↑(LinearEquiv.ofInjectiveEndo f h_inj) = f
                          noncomputable def basisOfFinrankZero {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {ι : Type u_1} [IsEmpty ι] (hV : FiniteDimensional.finrank K V = 0) :
                          Basis ι K V

                          If ι is an empty type and V is zero-dimensional, there is a unique ι-indexed basis.

                          Equations
                          Instances For
                            noncomputable def LinearMap.linearEquivOfInjective {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V₂ : Type v'} [AddCommGroup V₂] [Module K V₂] [FiniteDimensional K V] [FiniteDimensional K V₂] (f : V →ₗ[K] V₂) (hf : Function.Injective f) (hdim : FiniteDimensional.finrank K V = FiniteDimensional.finrank K V₂) :
                            V ≃ₗ[K] V₂

                            Given a linear map f between two vector spaces with the same dimension, if ker f = ⊥ then linearEquivOfInjective is the induced isomorphism between the two vector spaces.

                            Equations
                            Instances For
                              @[simp]
                              theorem LinearMap.linearEquivOfInjective_apply {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V₂ : Type v'} [AddCommGroup V₂] [Module K V₂] [FiniteDimensional K V] [FiniteDimensional K V₂] {f : V →ₗ[K] V₂} (hf : Function.Injective f) (hdim : FiniteDimensional.finrank K V = FiniteDimensional.finrank K V₂) (x : V) :
                              ↑(LinearMap.linearEquivOfInjective f hf hdim) x = f x
                              theorem FiniteDimensional.exists_mul_eq_one (F : Type u_1) {K : Type u_2} [Field F] [Ring K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] {x : K} (H : x 0) :
                              y, x * y = 1
                              noncomputable def divisionRingOfFiniteDimensional (F : Type u_1) (K : Type u_2) [Field F] [h : Ring K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] :

                              A domain that is module-finite as an algebra over a field is a division ring.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                noncomputable def fieldOfFiniteDimensional (F : Type u_1) (K : Type u_2) [Field F] [h : CommRing K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] :

                                An integral domain that is module-finite as an algebra over a field is a field.

                                Equations
                                Instances For
                                  theorem Submodule.finrank_lt_finrank_of_lt {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Submodule K V} {t : Submodule K V} [FiniteDimensional K { x // x t }] (hst : s < t) :
                                  theorem finrank_span_singleton {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {v : V} (hv : v 0) :
                                  theorem exists_smul_eq_of_finrank_eq_one {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : FiniteDimensional.finrank K V = 1) {x : V} (hx : x 0) (y : V) :
                                  c, c x = y

                                  In a one-dimensional space, any vector is a multiple of any nonzero vector

                                  theorem Set.finrank_mono {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {s : Set V} {t : Set V} (h : s t) :
                                  theorem span_eq_top_of_linearIndependent_of_card_eq_finrank {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type u_1} [hι : Nonempty ι] [Fintype ι] {b : ιV} (lin_ind : LinearIndependent K b) (card_eq : Fintype.card ι = FiniteDimensional.finrank K V) :
                                  @[simp]
                                  theorem basisOfLinearIndependentOfCardEqFinrank_repr_apply {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type u_1} [Nonempty ι] [Fintype ι] {b : ιV} (lin_ind : LinearIndependent K b) (card_eq : Fintype.card ι = FiniteDimensional.finrank K V) :
                                  ∀ (a : V), (basisOfLinearIndependentOfCardEqFinrank lin_ind card_eq).repr a = ↑(LinearIndependent.repr lin_ind) (↑(LinearMap.codRestrict (Submodule.span K (Set.range b)) LinearMap.id (_ : ∀ (x : V), LinearMap.id x Submodule.span K (Set.range b))) a)
                                  noncomputable def basisOfLinearIndependentOfCardEqFinrank {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type u_1} [Nonempty ι] [Fintype ι] {b : ιV} (lin_ind : LinearIndependent K b) (card_eq : Fintype.card ι = FiniteDimensional.finrank K V) :
                                  Basis ι K V

                                  A linear independent family of finrank K V vectors forms a basis.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem coe_basisOfLinearIndependentOfCardEqFinrank {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type u_1} [Nonempty ι] [Fintype ι] {b : ιV} (lin_ind : LinearIndependent K b) (card_eq : Fintype.card ι = FiniteDimensional.finrank K V) :
                                    @[simp]
                                    theorem finsetBasisOfLinearIndependentOfCardEqFinrank_repr_apply {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Finset V} (hs : Finset.Nonempty s) (lin_ind : LinearIndependent K Subtype.val) (card_eq : Finset.card s = FiniteDimensional.finrank K V) :
                                    ∀ (a : V), (finsetBasisOfLinearIndependentOfCardEqFinrank hs lin_ind card_eq).repr a = ↑(LinearIndependent.repr lin_ind) (↑(LinearMap.codRestrict (Submodule.span K (Set.range Subtype.val)) LinearMap.id (_ : ∀ (x : V), LinearMap.id x Submodule.span K (Set.range Subtype.val))) a)
                                    noncomputable def finsetBasisOfLinearIndependentOfCardEqFinrank {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Finset V} (hs : Finset.Nonempty s) (lin_ind : LinearIndependent K Subtype.val) (card_eq : Finset.card s = FiniteDimensional.finrank K V) :
                                    Basis { x // x s } K V

                                    A linear independent finset of finrank K V vectors forms a basis.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem coe_finsetBasisOfLinearIndependentOfCardEqFinrank {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Finset V} (hs : Finset.Nonempty s) (lin_ind : LinearIndependent K Subtype.val) (card_eq : Finset.card s = FiniteDimensional.finrank K V) :
                                      ↑(finsetBasisOfLinearIndependentOfCardEqFinrank hs lin_ind card_eq) = Subtype.val
                                      @[simp]
                                      theorem setBasisOfLinearIndependentOfCardEqFinrank_repr_apply {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Set V} [Nonempty s] [Fintype s] (lin_ind : LinearIndependent K Subtype.val) (card_eq : Finset.card (Set.toFinset s) = FiniteDimensional.finrank K V) :
                                      ∀ (a : V), (setBasisOfLinearIndependentOfCardEqFinrank lin_ind card_eq).repr a = ↑(LinearIndependent.repr lin_ind) (↑(LinearMap.codRestrict (Submodule.span K (Set.range Subtype.val)) LinearMap.id (_ : ∀ (x : V), LinearMap.id x Submodule.span K (Set.range Subtype.val))) a)
                                      noncomputable def setBasisOfLinearIndependentOfCardEqFinrank {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Set V} [Nonempty s] [Fintype s] (lin_ind : LinearIndependent K Subtype.val) (card_eq : Finset.card (Set.toFinset s) = FiniteDimensional.finrank K V) :
                                      Basis (s) K V

                                      A linear independent set of finrank K V vectors forms a basis.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem coe_setBasisOfLinearIndependentOfCardEqFinrank {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Set V} [Nonempty s] [Fintype s] (lin_ind : LinearIndependent K Subtype.val) (card_eq : Finset.card (Set.toFinset s) = FiniteDimensional.finrank K V) :
                                        ↑(setBasisOfLinearIndependentOfCardEqFinrank lin_ind card_eq) = Subtype.val

                                        We now give characterisations of finrank K V = 1 and finrank K V ≤ 1.

                                        theorem finrank_eq_one_iff_of_nonzero {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (v : V) (nz : v 0) :

                                        A vector space with a nonzero vector v has dimension 1 iff v spans.

                                        theorem finrank_eq_one_iff_of_nonzero' {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (v : V) (nz : v 0) :
                                        FiniteDimensional.finrank K V = 1 ∀ (w : V), c, c v = w

                                        A module with a nonzero vector v has dimension 1 iff every vector is a multiple of v.

                                        theorem finrank_eq_one_iff {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (ι : Type u_1) [Unique ι] :

                                        A module has dimension 1 iff there is some v : V so {v} is a basis.

                                        theorem finrank_eq_one_iff' {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] :
                                        FiniteDimensional.finrank K V = 1 v _n, ∀ (w : V), c, c v = w

                                        A module has dimension 1 iff there is some nonzero v : V so every vector is a multiple of v.

                                        theorem finrank_le_one_iff {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] :
                                        FiniteDimensional.finrank K V 1 v, ∀ (w : V), c, c v = w

                                        A finite dimensional module has dimension at most 1 iff there is some v : V so every vector is a multiple of v.

                                        theorem surjective_of_nonzero_of_finrank_eq_one {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {W : Type u_1} {A : Type u_2} [Semiring A] [Module A V] [AddCommGroup W] [Module K W] [Module A W] [LinearMap.CompatibleSMul V W K A] (h : FiniteDimensional.finrank K W = 1) {f : V →ₗ[A] W} (w : f 0) :
                                        theorem is_simple_module_of_finrank_eq_one {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {A : Type u_1} [Semiring A] [Module A V] [SMul K A] [IsScalarTower K A V] (h : FiniteDimensional.finrank K V = 1) :

                                        Any K-algebra module that is 1-dimensional over K is simple.

                                        theorem Subalgebra.finiteDimensional_toSubmodule {F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} :
                                        FiniteDimensional F { x // x Subalgebra.toSubmodule S } FiniteDimensional F { x // x S }

                                        A Subalgebra is FiniteDimensional iff it is FiniteDimensional as a submodule.

                                        theorem FiniteDimensional.of_subalgebra_toSubmodule {F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} :
                                        FiniteDimensional F { x // x Subalgebra.toSubmodule S }FiniteDimensional F { x // x S }

                                        Alias of the forward direction of Subalgebra.finiteDimensional_toSubmodule.


                                        A Subalgebra is FiniteDimensional iff it is FiniteDimensional as a submodule.

                                        theorem FiniteDimensional.subalgebra_toSubmodule {F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} :
                                        FiniteDimensional F { x // x S }FiniteDimensional F { x // x Subalgebra.toSubmodule S }

                                        Alias of the reverse direction of Subalgebra.finiteDimensional_toSubmodule.


                                        A Subalgebra is FiniteDimensional iff it is FiniteDimensional as a submodule.

                                        theorem Subalgebra.eq_bot_of_rank_le_one {F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} (h : Module.rank F { x // x S } 1) :
                                        S =
                                        theorem Subalgebra.eq_bot_of_finrank_one {F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} (h : FiniteDimensional.finrank F { x // x S } = 1) :
                                        S =
                                        @[simp]
                                        theorem Subalgebra.rank_eq_one_iff {F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] [Nontrivial E] {S : Subalgebra F E} :
                                        Module.rank F { x // x S } = 1 S =
                                        @[simp]
                                        theorem Subalgebra.finrank_eq_one_iff {F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] [Nontrivial E] {S : Subalgebra F E} :
                                        FiniteDimensional.finrank F { x // x S } = 1 S =
                                        @[simp]
                                        theorem Subalgebra.bot_eq_top_of_rank_eq_one {F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] [Nontrivial E] :
                                        Module.rank F E = 1 =

                                        Alias of the reverse direction of Subalgebra.bot_eq_top_iff_rank_eq_one.

                                        @[simp]

                                        Alias of the reverse direction of Subalgebra.bot_eq_top_iff_finrank_eq_one.

                                        theorem Module.End.ker_pow_constant {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {f : Module.End K V} {k : } (h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)) (m : ) :
                                        LinearMap.ker (f ^ k) = LinearMap.ker (f ^ (k + m))