Documentation

Mathlib.MeasureTheory.Group.Action

Measures invariant under group actions #

A measure μ : Measure α is said to be invariant under an action of a group G if scalar multiplication by c : G is a measure preserving map for all c. In this file we define a typeclass for measures invariant under action of an (additive or multiplicative) group and prove some basic properties of such measures.

class MeasureTheory.VAddInvariantMeasure (M : Type u_1) (α : Type u_2) [VAdd M α] :

A measure μ : Measure α is invariant under an additive action of M on α if for any measurable set s : Set α and c : M, the measure of its preimage under fun x => c +ᵥ x is equal to the measure of s.

Instances
    class MeasureTheory.SMulInvariantMeasure (M : Type u_1) (α : Type u_2) [SMul M α] :

    A measure μ : Measure α is invariant under a multiplicative action of M on α if for any measurable set s : Set α and c : M, the measure of its preimage under fun x => c • x is equal to the measure of s.

    Instances
      @[simp]
      theorem MeasureTheory.map_vadd {M : Type v} {α : Type w} {m : MeasurableSpace α} [MeasurableSpace M] [VAdd M α] [MeasurableVAdd M α] (c : M) (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure M α μ] :
      MeasureTheory.Measure.map (fun x => c +ᵥ x) μ = μ
      @[simp]
      theorem MeasureTheory.map_smul {M : Type v} {α : Type w} {m : MeasurableSpace α} [MeasurableSpace M] [SMul M α] [MeasurableSMul M α] (c : M) (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure M α μ] :
      MeasureTheory.Measure.map (fun x => c x) μ = μ
      theorem MeasureTheory.vaddInvariantMeasure_map {M : Type uM} {α : Type uα} {β : Type uβ} [MeasurableSpace M] [MeasurableSpace α] [MeasurableSpace β] [VAdd M α] [VAdd M β] [MeasurableVAdd M β] (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure M α μ] (f : αβ) (hsmul : ∀ (m : M) (a : α), f (m +ᵥ a) = m +ᵥ f a) (hf : Measurable f) :
      theorem MeasureTheory.smulInvariantMeasure_map {M : Type uM} {α : Type uα} {β : Type uβ} [MeasurableSpace M] [MeasurableSpace α] [MeasurableSpace β] [SMul M α] [SMul M β] [MeasurableSMul M β] (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure M α μ] (f : αβ) (hsmul : ∀ (m : M) (a : α), f (m a) = m f a) (hf : Measurable f) :
      theorem MeasureTheory.vaddInvariantMeasure_tfae (G : Type u) {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] [MeasurableSpace G] [MeasurableVAdd G α] (μ : MeasureTheory.Measure α) :
      List.TFAE [MeasureTheory.VAddInvariantMeasure G α μ, ∀ (c : G) (s : Set α), MeasurableSet sμ ((fun x => c +ᵥ x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), MeasurableSet sμ (c +ᵥ s) = μ s, ∀ (c : G) (s : Set α), μ ((fun x => c +ᵥ x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), μ (c +ᵥ s) = μ s, ∀ (c : G), MeasureTheory.Measure.map (fun x => c +ᵥ x) μ = μ, ∀ (c : G), MeasureTheory.MeasurePreserving fun x => c +ᵥ x]

      Equivalent definitions of a measure invariant under an additive action of a group.

      • 0: VAddInvariantMeasure G α μ;

      • 1: for every c : G and a measurable set s, the measure of the preimage of s under vector addition (c +ᵥ ·) is equal to the measure of s;

      • 2: for every c : G and a measurable set s, the measure of the image c +ᵥ s of s under vector addition (c +ᵥ ·) is equal to the measure of s;

      • 3, 4: properties 2, 3 for any set, including non-measurable ones;

      • 5: for any c : G, vector addition of c maps μ to μ;

      • 6: for any c : G, vector addition of c is a measure preserving map.

      theorem MeasureTheory.smulInvariantMeasure_tfae (G : Type u) {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] [MeasurableSpace G] [MeasurableSMul G α] (μ : MeasureTheory.Measure α) :
      List.TFAE [MeasureTheory.SMulInvariantMeasure G α μ, ∀ (c : G) (s : Set α), MeasurableSet sμ ((fun x => c x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), MeasurableSet sμ (c s) = μ s, ∀ (c : G) (s : Set α), μ ((fun x => c x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), μ (c s) = μ s, ∀ (c : G), MeasureTheory.Measure.map (fun x => c x) μ = μ, ∀ (c : G), MeasureTheory.MeasurePreserving fun x => c x]

      Equivalent definitions of a measure invariant under a multiplicative action of a group.

      • 0: SMulInvariantMeasure G α μ;

      • 1: for every c : G and a measurable set s, the measure of the preimage of s under scalar multiplication by c is equal to the measure of s;

      • 2: for every c : G and a measurable set s, the measure of the image c • s of s under scalar multiplication by c is equal to the measure of s;

      • 3, 4: properties 2, 3 for any set, including non-measurable ones;

      • 5: for any c : G, scalar multiplication by c maps μ to μ;

      • 6: for any c : G, scalar multiplication by c is a measure preserving map.

      @[simp]
      theorem MeasureTheory.measure_preimage_vadd {G : Type u} {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] [MeasurableSpace G] [MeasurableVAdd G α] (c : G) (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure G α μ] (s : Set α) :
      μ ((fun x => c +ᵥ x) ⁻¹' s) = μ s
      @[simp]
      theorem MeasureTheory.measure_preimage_smul {G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] [MeasurableSpace G] [MeasurableSMul G α] (c : G) (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure G α μ] (s : Set α) :
      μ ((fun x => c x) ⁻¹' s) = μ s
      @[simp]
      theorem MeasureTheory.measure_vadd {G : Type u} {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] [MeasurableSpace G] [MeasurableVAdd G α] (c : G) (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure G α μ] (s : Set α) :
      μ (c +ᵥ s) = μ s
      @[simp]
      theorem MeasureTheory.measure_smul {G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] [MeasurableSpace G] [MeasurableSMul G α] (c : G) (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure G α μ] (s : Set α) :
      μ (c s) = μ s
      theorem MeasureTheory.measure_vadd_null {G : Type u} {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] [MeasurableSpace G] [MeasurableVAdd G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] {s : Set α} (h : μ s = 0) (c : G) :
      μ (c +ᵥ s) = 0
      theorem MeasureTheory.measure_smul_null {G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] [MeasurableSpace G] [MeasurableSMul G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] {s : Set α} (h : μ s = 0) (c : G) :
      μ (c s) = 0
      theorem MeasureTheory.measure_isOpen_pos_of_vaddInvariant_of_compact_ne_zero (G : Type u) {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] [MeasurableSpace G] [MeasurableVAdd G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] [TopologicalSpace α] [ContinuousConstVAdd G α] [AddAction.IsMinimal G α] {K : Set α} {U : Set α} (hK : IsCompact K) (hμK : μ K 0) (hU : IsOpen U) (hne : Set.Nonempty U) :
      0 < μ U

      If measure μ is invariant under an additive group action and is nonzero on a compact set K, then it is positive on any nonempty open set. In case of a regular measure, one can assume μ ≠ 0 instead of μ K ≠ 0, see MeasureTheory.measure_isOpen_pos_of_vaddInvariant_of_ne_zero.

      abbrev MeasureTheory.measure_isOpen_pos_of_vaddInvariant_of_compact_ne_zero.match_1 (G : Type u_1) {α : Type u_2} [AddGroup G] [AddAction G α] {K : Set α} {U : Set α} (motive : (I, K ⋃ (g : G) (_ : g I), g +ᵥ U) → Prop) :
      (x : I, K ⋃ (g : G) (_ : g I), g +ᵥ U) → ((t : Finset G) → (ht : K ⋃ (g : G) (_ : g t), g +ᵥ U) → motive (_ : I, K ⋃ (g : G) (_ : g I), g +ᵥ U)) → motive x
      Equations
      Instances For
        theorem MeasureTheory.measure_isOpen_pos_of_smulInvariant_of_compact_ne_zero (G : Type u) {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] [MeasurableSpace G] [MeasurableSMul G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] [TopologicalSpace α] [ContinuousConstSMul G α] [MulAction.IsMinimal G α] {K : Set α} {U : Set α} (hK : IsCompact K) (hμK : μ K 0) (hU : IsOpen U) (hne : Set.Nonempty U) :
        0 < μ U

        If measure μ is invariant under a group action and is nonzero on a compact set K, then it is positive on any nonempty open set. In case of a regular measure, one can assume μ ≠ 0 instead of μ K ≠ 0, see MeasureTheory.measure_isOpen_pos_of_smulInvariant_of_ne_zero.

        abbrev MeasureTheory.isLocallyFiniteMeasure_of_vaddInvariant.match_1 (G : Type u_1) {α : Type u_2} [AddGroup G] [AddAction G α] {U : Set α} (x : α) (motive : (c, c +ᵥ x U) → Prop) :
        (x : c, c +ᵥ x U) → ((g : G) → (hg : g +ᵥ x U) → motive (_ : c, c +ᵥ x U)) → motive x
        Equations
        Instances For
          abbrev MeasureTheory.measure_isOpen_pos_of_vaddInvariant_of_ne_zero.match_1 {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [TopologicalSpace α] (motive : (K, IsCompact K μ K 0) → Prop) :
          (x : K, IsCompact K μ K 0) → ((_K : Set α) → (hK : IsCompact _K) → (hμK : μ _K 0) → motive (_ : K, IsCompact K μ K 0)) → motive x
          Equations
          Instances For