Minimal action of a group #
In this file we define an action of a monoid M
on a topological space α
to be minimal if the
M
-orbit of every point x : α
is dense. We also provide an additive version of this definition
and prove some basic facts about minimal actions.
TODO #
- Define a minimal set of an action.
Tags #
group action, minimal
class
AddAction.IsMinimal
(M : Type u_1)
(α : Type u_2)
[AddMonoid M]
[TopologicalSpace α]
[AddAction M α]
:
- dense_orbit : ∀ (x : α), Dense (AddAction.orbit M x)
An action of an additive monoid M
on a topological space is called minimal if the M
-orbit
of every point x : α
is dense.
Instances
class
MulAction.IsMinimal
(M : Type u_1)
(α : Type u_2)
[Monoid M]
[TopologicalSpace α]
[MulAction M α]
:
- dense_orbit : ∀ (x : α), Dense (MulAction.orbit M x)
An action of a monoid M
on a topological space is called minimal if the M
-orbit of every
point x : α
is dense.
Instances
theorem
AddAction.dense_orbit
(M : Type u_1)
{α : Type u_3}
[AddMonoid M]
[TopologicalSpace α]
[AddAction M α]
[AddAction.IsMinimal M α]
(x : α)
:
Dense (AddAction.orbit M x)
theorem
MulAction.dense_orbit
(M : Type u_1)
{α : Type u_3}
[Monoid M]
[TopologicalSpace α]
[MulAction M α]
[MulAction.IsMinimal M α]
(x : α)
:
Dense (MulAction.orbit M x)
theorem
denseRange_vadd
(M : Type u_1)
{α : Type u_3}
[AddMonoid M]
[TopologicalSpace α]
[AddAction M α]
[AddAction.IsMinimal M α]
(x : α)
:
DenseRange fun c => c +ᵥ x
theorem
denseRange_smul
(M : Type u_1)
{α : Type u_3}
[Monoid M]
[TopologicalSpace α]
[MulAction M α]
[MulAction.IsMinimal M α]
(x : α)
:
DenseRange fun c => c • x
instance
AddAction.isMinimal_of_pretransitive
(M : Type u_1)
{α : Type u_3}
[AddMonoid M]
[TopologicalSpace α]
[AddAction M α]
[AddAction.IsPretransitive M α]
:
theorem
AddAction.isMinimal_of_pretransitive.proof_1
(M : Type u_1)
{α : Type u_2}
[AddMonoid M]
[TopologicalSpace α]
[AddAction M α]
[AddAction.IsPretransitive M α]
:
instance
MulAction.isMinimal_of_pretransitive
(M : Type u_1)
{α : Type u_3}
[Monoid M]
[TopologicalSpace α]
[MulAction M α]
[MulAction.IsPretransitive M α]
:
theorem
IsOpen.exists_vadd_mem
(M : Type u_1)
{α : Type u_3}
[AddMonoid M]
[TopologicalSpace α]
[AddAction M α]
[AddAction.IsMinimal M α]
(x : α)
{U : Set α}
(hUo : IsOpen U)
(hne : Set.Nonempty U)
:
theorem
IsOpen.exists_smul_mem
(M : Type u_1)
{α : Type u_3}
[Monoid M]
[TopologicalSpace α]
[MulAction M α]
[MulAction.IsMinimal M α]
(x : α)
{U : Set α}
(hUo : IsOpen U)
(hne : Set.Nonempty U)
:
theorem
IsOpen.iUnion_preimage_vadd
(M : Type u_1)
{α : Type u_3}
[AddMonoid M]
[TopologicalSpace α]
[AddAction M α]
[AddAction.IsMinimal M α]
{U : Set α}
(hUo : IsOpen U)
(hne : Set.Nonempty U)
:
theorem
IsOpen.iUnion_preimage_smul
(M : Type u_1)
{α : Type u_3}
[Monoid M]
[TopologicalSpace α]
[MulAction M α]
[MulAction.IsMinimal M α]
{U : Set α}
(hUo : IsOpen U)
(hne : Set.Nonempty U)
:
abbrev
IsOpen.iUnion_vadd.match_1
(G : Type u_1)
{α : Type u_2}
[AddGroup G]
[AddAction G α]
{U : Set α}
(x : α)
(motive : (∃ c, c +ᵥ x ∈ U) → Prop)
:
Equations
- IsOpen.iUnion_vadd.match_1 G x motive x h_1 = Exists.casesOn x fun w h => h_1 w h
Instances For
theorem
IsOpen.iUnion_vadd
(G : Type u_2)
{α : Type u_3}
[AddGroup G]
[TopologicalSpace α]
[AddAction G α]
[AddAction.IsMinimal G α]
{U : Set α}
(hUo : IsOpen U)
(hne : Set.Nonempty U)
:
theorem
IsOpen.iUnion_smul
(G : Type u_2)
{α : Type u_3}
[Group G]
[TopologicalSpace α]
[MulAction G α]
[MulAction.IsMinimal G α]
{U : Set α}
(hUo : IsOpen U)
(hne : Set.Nonempty U)
:
theorem
IsCompact.exists_finite_cover_vadd
(G : Type u_2)
{α : Type u_3}
[AddGroup G]
[TopologicalSpace α]
[AddAction G α]
[AddAction.IsMinimal G α]
[ContinuousConstVAdd G α]
{K : Set α}
{U : Set α}
(hK : IsCompact K)
(hUo : IsOpen U)
(hne : Set.Nonempty U)
:
theorem
IsCompact.exists_finite_cover_smul
(G : Type u_2)
{α : Type u_3}
[Group G]
[TopologicalSpace α]
[MulAction G α]
[MulAction.IsMinimal G α]
[ContinuousConstSMul G α]
{K : Set α}
{U : Set α}
(hK : IsCompact K)
(hUo : IsOpen U)
(hne : Set.Nonempty U)
:
abbrev
dense_of_nonempty_vadd_invariant.match_1
{α : Type u_1}
{s : Set α}
(motive : Set.Nonempty s → Prop)
:
(hne : Set.Nonempty s) → ((x : α) → (hx : x ∈ s) → motive (_ : ∃ x, x ∈ s)) → motive hne
Equations
- dense_of_nonempty_vadd_invariant.match_1 motive hne h_1 = Exists.casesOn hne fun w h => h_1 w h
Instances For
theorem
dense_of_nonempty_vadd_invariant
(M : Type u_1)
{α : Type u_3}
[AddMonoid M]
[TopologicalSpace α]
[AddAction M α]
[AddAction.IsMinimal M α]
{s : Set α}
(hne : Set.Nonempty s)
(hsmul : ∀ (c : M), c +ᵥ s ⊆ s)
:
Dense s
theorem
dense_of_nonempty_smul_invariant
(M : Type u_1)
{α : Type u_3}
[Monoid M]
[TopologicalSpace α]
[MulAction M α]
[MulAction.IsMinimal M α]
{s : Set α}
(hne : Set.Nonempty s)
(hsmul : ∀ (c : M), c • s ⊆ s)
:
Dense s
theorem
isMinimal_iff_closed_vadd_invariant
(M : Type u_1)
{α : Type u_3}
[AddMonoid M]
[TopologicalSpace α]
[AddAction M α]
[ContinuousConstVAdd M α]
:
theorem
isMinimal_iff_closed_smul_invariant
(M : Type u_1)
{α : Type u_3}
[Monoid M]
[TopologicalSpace α]
[MulAction M α]
[ContinuousConstSMul M α]
: