Documentation

Mathlib.MeasureTheory.Constructions.Pi

Product measures #

In this file we define and prove properties about finite products of measures (and at some point, countable products of measures).

Main definition #

To apply Fubini along some subset of the variables, use MeasureTheory.measurePreserving_piEquivPiSubtypeProd to reduce to the situation of a product of two measures: this lemma states that the bijection MeasurableEquiv.piEquivPiSubtypeProd α p between (∀ i : ι, α i) and ((i : {i // p i}) → α i) × ((i : {i // ¬ p i}) → α i) maps a product measure to a direct product of product measures, to which one can apply the usual Fubini for direct product of measures.

Implementation Notes #

We define MeasureTheory.OuterMeasure.pi, the product of finitely many outer measures, as the maximal outer measure n with the property that n (pi univ s) ≤ ∏ i, m i (s i), where pi univ s is the product of the sets {s i | i : ι}.

We then show that this induces a product of measures, called MeasureTheory.Measure.pi. For a collection of σ-finite measures μ and a collection of measurable sets s we show that Measure.pi μ (pi univ s) = ∏ i, m i (s i). To do this, we follow the following steps:

Tags #

finitary product measure

We start with some measurability properties

theorem IsPiSystem.pi {ι : Type u_1} {α : ιType u_3} {C : (i : ι) → Set (Set (α i))} (hC : ∀ (i : ι), IsPiSystem (C i)) :
IsPiSystem (Set.pi Set.univ '' Set.pi Set.univ C)

Boxes formed by π-systems form a π-system.

theorem isPiSystem_pi {ι : Type u_1} {α : ιType u_3} [(i : ι) → MeasurableSpace (α i)] :
IsPiSystem (Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s})

Boxes form a π-system.

theorem IsCountablySpanning.pi {ι : Type u_1} {α : ιType u_3} [Finite ι] {C : (i : ι) → Set (Set (α i))} (hC : ∀ (i : ι), IsCountablySpanning (C i)) :
IsCountablySpanning (Set.pi Set.univ '' Set.pi Set.univ C)

Boxes of countably spanning sets are countably spanning.

theorem generateFrom_pi_eq {ι : Type u_1} {α : ιType u_3} [Finite ι] {C : (i : ι) → Set (Set (α i))} (hC : ∀ (i : ι), IsCountablySpanning (C i)) :
MeasurableSpace.pi = MeasurableSpace.generateFrom (Set.pi Set.univ '' Set.pi Set.univ C)

The product of generated σ-algebras is the one generated by boxes, if both generating sets are countably spanning.

theorem generateFrom_eq_pi {ι : Type u_1} {α : ιType u_3} [Finite ι] [h : (i : ι) → MeasurableSpace (α i)] {C : (i : ι) → Set (Set (α i))} (hC : ∀ (i : ι), MeasurableSpace.generateFrom (C i) = h i) (h2C : ∀ (i : ι), IsCountablySpanning (C i)) :
MeasurableSpace.generateFrom (Set.pi Set.univ '' Set.pi Set.univ C) = MeasurableSpace.pi

If C and D generate the σ-algebras on α resp. β, then rectangles formed by C and D generate the σ-algebra on α × β.

theorem generateFrom_pi {ι : Type u_1} {α : ιType u_3} [Finite ι] [(i : ι) → MeasurableSpace (α i)] :
MeasurableSpace.generateFrom (Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s}) = MeasurableSpace.pi

The product σ-algebra is generated from boxes, i.e. s ×ˢ t for sets s : set α and t : set β.

def MeasureTheory.piPremeasure {ι : Type u_1} {α : ιType u_3} [Fintype ι] (m : (i : ι) → MeasureTheory.OuterMeasure (α i)) (s : Set ((i : ι) → α i)) :

An upper bound for the measure in a finite product space. It is defined to by taking the image of the set under all projections, and taking the product of the measures of these images. For measurable boxes it is equal to the correct measure.

Equations
Instances For
    theorem MeasureTheory.piPremeasure_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] {m : (i : ι) → MeasureTheory.OuterMeasure (α i)} {s : (i : ι) → Set (α i)} (hs : Set.Nonempty (Set.pi Set.univ s)) :
    MeasureTheory.piPremeasure m (Set.pi Set.univ s) = Finset.prod Finset.univ fun i => ↑(m i) (s i)
    theorem MeasureTheory.piPremeasure_pi' {ι : Type u_1} {α : ιType u_3} [Fintype ι] {m : (i : ι) → MeasureTheory.OuterMeasure (α i)} {s : (i : ι) → Set (α i)} :
    MeasureTheory.piPremeasure m (Set.pi Set.univ s) = Finset.prod Finset.univ fun i => ↑(m i) (s i)
    theorem MeasureTheory.piPremeasure_pi_mono {ι : Type u_1} {α : ιType u_3} [Fintype ι] {m : (i : ι) → MeasureTheory.OuterMeasure (α i)} {s : Set ((i : ι) → α i)} {t : Set ((i : ι) → α i)} (h : s t) :
    theorem MeasureTheory.piPremeasure_pi_eval {ι : Type u_1} {α : ιType u_3} [Fintype ι] {m : (i : ι) → MeasureTheory.OuterMeasure (α i)} {s : Set ((i : ι) → α i)} :
    def MeasureTheory.OuterMeasure.pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] (m : (i : ι) → MeasureTheory.OuterMeasure (α i)) :
    MeasureTheory.OuterMeasure ((i : ι) → α i)

    OuterMeasure.pi m is the finite product of the outer measures {m i | i : ι}. It is defined to be the maximal outer measure n with the property that n (pi univ s) ≤ ∏ i, m i (s i), where pi univ s is the product of the sets {s i | i : ι}.

    Equations
    Instances For
      theorem MeasureTheory.OuterMeasure.pi_pi_le {ι : Type u_1} {α : ιType u_3} [Fintype ι] (m : (i : ι) → MeasureTheory.OuterMeasure (α i)) (s : (i : ι) → Set (α i)) :
      ↑(MeasureTheory.OuterMeasure.pi m) (Set.pi Set.univ s) Finset.prod Finset.univ fun i => ↑(m i) (s i)
      theorem MeasureTheory.OuterMeasure.le_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] {m : (i : ι) → MeasureTheory.OuterMeasure (α i)} {n : MeasureTheory.OuterMeasure ((i : ι) → α i)} :
      n MeasureTheory.OuterMeasure.pi m ∀ (s : (i : ι) → Set (α i)), Set.Nonempty (Set.pi Set.univ s)n (Set.pi Set.univ s) Finset.prod Finset.univ fun i => ↑(m i) (s i)
      def MeasureTheory.Measure.tprod {δ : Type u_4} {π : δType u_5} [(x : δ) → MeasurableSpace (π x)] (l : List δ) (μ : (i : δ) → MeasureTheory.Measure (π i)) :

      A product of measures in tprod α l.

      Equations
      Instances For
        @[simp]
        theorem MeasureTheory.Measure.tprod_nil {δ : Type u_4} {π : δType u_5} [(x : δ) → MeasurableSpace (π x)] (μ : (i : δ) → MeasureTheory.Measure (π i)) :
        @[simp]
        theorem MeasureTheory.Measure.tprod_cons {δ : Type u_4} {π : δType u_5} [(x : δ) → MeasurableSpace (π x)] (i : δ) (l : List δ) (μ : (i : δ) → MeasureTheory.Measure (π i)) :
        theorem MeasureTheory.Measure.tprod_tprod {δ : Type u_4} {π : δType u_5} [(x : δ) → MeasurableSpace (π x)] (l : List δ) (μ : (i : δ) → MeasureTheory.Measure (π i)) [∀ (i : δ), MeasureTheory.SigmaFinite (μ i)] (s : (i : δ) → Set (π i)) :
        ↑(MeasureTheory.Measure.tprod l μ) (Set.tprod l s) = List.prod (List.map (fun i => ↑(μ i) (s i)) l)
        def MeasureTheory.Measure.pi' {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [Encodable ι] :
        MeasureTheory.Measure ((i : ι) → α i)

        The product measure on an encodable finite type, defined by mapping Measure.tprod along the equivalence MeasurableEquiv.piMeasurableEquivTProd. The definition MeasureTheory.Measure.pi should be used instead of this one.

        Equations
        Instances For
          theorem MeasureTheory.Measure.pi'_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [Encodable ι] [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] (s : (i : ι) → Set (α i)) :
          ↑(MeasureTheory.Measure.pi' μ) (Set.pi Set.univ s) = Finset.prod Finset.univ fun i => ↑(μ i) (s i)
          theorem MeasureTheory.Measure.pi_caratheodory {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) :
          theorem MeasureTheory.Measure.pi_def {ι : Type u_4} {α : ιType u_5} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) :
          @[irreducible]
          def MeasureTheory.Measure.pi {ι : Type u_4} {α : ιType u_5} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) :
          MeasureTheory.Measure ((i : ι) → α i)

          Measure.pi μ is the finite product of the measures {μ i | i : ι}. It is defined to be measure corresponding to MeasureTheory.OuterMeasure.pi.

          Equations
          Instances For
            instance MeasureTheory.MeasureSpace.pi {ι : Type u_1} [Fintype ι] {α : ιType u_4} [(i : ι) → MeasureTheory.MeasureSpace (α i)] :
            MeasureTheory.MeasureSpace ((i : ι) → α i)
            Equations
            theorem MeasureTheory.Measure.pi_pi_aux {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] (s : (i : ι) → Set (α i)) (hs : ∀ (i : ι), MeasurableSet (s i)) :
            ↑(MeasureTheory.Measure.pi μ) (Set.pi Set.univ s) = Finset.prod Finset.univ fun i => ↑(μ i) (s i)
            def MeasureTheory.Measure.FiniteSpanningSetsIn.pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} {C : (i : ι) → Set (Set (α i))} (hμ : (i : ι) → MeasureTheory.Measure.FiniteSpanningSetsIn (μ i) (C i)) :

            Measure.pi μ has finite spanning sets in rectangles of finite spanning sets.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem MeasureTheory.Measure.pi_eq_generateFrom {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} {C : (i : ι) → Set (Set (α i))} (hC : ∀ (i : ι), MeasurableSpace.generateFrom (C i) = inst✝ i) (h2C : ∀ (i : ι), IsPiSystem (C i)) (h3C : (i : ι) → MeasureTheory.Measure.FiniteSpanningSetsIn (μ i) (C i)) {μν : MeasureTheory.Measure ((i : ι) → α i)} (h₁ : ∀ (s : (i : ι) → Set (α i)), (∀ (i : ι), s i C i) → μν (Set.pi Set.univ s) = Finset.prod Finset.univ fun i => ↑(μ i) (s i)) :

              A measure on a finite product space equals the product measure if they are equal on rectangles with as sides sets that generate the corresponding σ-algebras.

              theorem MeasureTheory.Measure.pi_eq {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] {μ' : MeasureTheory.Measure ((i : ι) → α i)} (h : ∀ (s : (i : ι) → Set (α i)), (∀ (i : ι), MeasurableSet (s i)) → μ' (Set.pi Set.univ s) = Finset.prod Finset.univ fun i => ↑(μ i) (s i)) :

              A measure on a finite product space equals the product measure if they are equal on rectangles.

              theorem MeasureTheory.Measure.pi'_eq_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [Encodable ι] :
              @[simp]
              theorem MeasureTheory.Measure.pi_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] (s : (i : ι) → Set (α i)) :
              ↑(MeasureTheory.Measure.pi μ) (Set.pi Set.univ s) = Finset.prod Finset.univ fun i => ↑(μ i) (s i)
              theorem MeasureTheory.Measure.pi_univ {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] :
              ↑(MeasureTheory.Measure.pi μ) Set.univ = Finset.prod Finset.univ fun i => ↑(μ i) Set.univ
              theorem MeasureTheory.Measure.pi_ball {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → MetricSpace (α i)] (x : (i : ι) → α i) {r : } (hr : 0 < r) :
              ↑(MeasureTheory.Measure.pi μ) (Metric.ball x r) = Finset.prod Finset.univ fun i => ↑(μ i) (Metric.ball (x i) r)
              theorem MeasureTheory.Measure.pi_closedBall {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → MetricSpace (α i)] (x : (i : ι) → α i) {r : } (hr : 0 r) :
              ↑(MeasureTheory.Measure.pi μ) (Metric.closedBall x r) = Finset.prod Finset.univ fun i => ↑(μ i) (Metric.closedBall (x i) r)
              theorem MeasureTheory.Measure.pi_of_empty {α : Type u_4} [IsEmpty α] {β : αType u_5} {m : (a : α) → MeasurableSpace (β a)} (μ : (a : α) → MeasureTheory.Measure (β a)) (x : optParam ((a : α) → β a) fun a => isEmptyElim a) :
              theorem MeasureTheory.Measure.pi_eval_preimage_null {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] {i : ι} {s : Set (α i)} (hs : ↑(μ i) s = 0) :
              theorem MeasureTheory.Measure.pi_hyperplane {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] (i : ι) [MeasureTheory.NoAtoms (μ i)] (x : α i) :
              ↑(MeasureTheory.Measure.pi μ) {f | f i = x} = 0
              theorem MeasureTheory.Measure.ae_eval_ne {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] (i : ι) [MeasureTheory.NoAtoms (μ i)] (x : α i) :
              ∀ᵐ (y : (i : ι) → α i) ∂MeasureTheory.Measure.pi μ, y i x
              theorem MeasureTheory.Measure.tendsto_eval_ae_ae {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] {i : ι} :
              theorem MeasureTheory.Measure.ae_pi_le_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] :
              theorem MeasureTheory.Measure.ae_eq_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] {β : ιType u_4} {f : (i : ι) → α iβ i} {f' : (i : ι) → α iβ i} (h : ∀ (i : ι), f i =ᶠ[MeasureTheory.Measure.ae (μ i)] f' i) :
              (fun x i => f i (x i)) =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.pi μ)] fun x i => f' i (x i)
              theorem MeasureTheory.Measure.ae_le_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] {β : ιType u_4} [(i : ι) → Preorder (β i)] {f : (i : ι) → α iβ i} {f' : (i : ι) → α iβ i} (h : ∀ (i : ι), f i ≤ᶠ[MeasureTheory.Measure.ae (μ i)] f' i) :
              (fun x i => f i (x i)) ≤ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.pi μ)] fun x i => f' i (x i)
              theorem MeasureTheory.Measure.ae_le_set_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] {I : Set ι} {s : (i : ι) → Set (α i)} {t : (i : ι) → Set (α i)} (h : ∀ (i : ι), i Is i ≤ᶠ[MeasureTheory.Measure.ae (μ i)] t i) :
              theorem MeasureTheory.Measure.ae_eq_set_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] {I : Set ι} {s : (i : ι) → Set (α i)} {t : (i : ι) → Set (α i)} (h : ∀ (i : ι), i Is i =ᶠ[MeasureTheory.Measure.ae (μ i)] t i) :
              theorem MeasureTheory.Measure.pi_Iio_ae_eq_pi_Iic {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {s : Set ι} {f : (i : ι) → α i} :
              theorem MeasureTheory.Measure.pi_Ioi_ae_eq_pi_Ici {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {s : Set ι} {f : (i : ι) → α i} :
              theorem MeasureTheory.Measure.univ_pi_Iio_ae_eq_Iic {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {f : (i : ι) → α i} :
              theorem MeasureTheory.Measure.univ_pi_Ioi_ae_eq_Ici {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {f : (i : ι) → α i} :
              theorem MeasureTheory.Measure.pi_Ioo_ae_eq_pi_Icc {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {s : Set ι} {f : (i : ι) → α i} {g : (i : ι) → α i} :
              (Set.pi s fun i => Set.Ioo (f i) (g i)) =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.pi μ)] Set.pi s fun i => Set.Icc (f i) (g i)
              theorem MeasureTheory.Measure.pi_Ioo_ae_eq_pi_Ioc {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {s : Set ι} {f : (i : ι) → α i} {g : (i : ι) → α i} :
              (Set.pi s fun i => Set.Ioo (f i) (g i)) =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.pi μ)] Set.pi s fun i => Set.Ioc (f i) (g i)
              theorem MeasureTheory.Measure.univ_pi_Ioo_ae_eq_Icc {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {f : (i : ι) → α i} {g : (i : ι) → α i} :
              theorem MeasureTheory.Measure.pi_Ioc_ae_eq_pi_Icc {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {s : Set ι} {f : (i : ι) → α i} {g : (i : ι) → α i} :
              (Set.pi s fun i => Set.Ioc (f i) (g i)) =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.pi μ)] Set.pi s fun i => Set.Icc (f i) (g i)
              theorem MeasureTheory.Measure.univ_pi_Ioc_ae_eq_Icc {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {f : (i : ι) → α i} {g : (i : ι) → α i} :
              theorem MeasureTheory.Measure.pi_Ico_ae_eq_pi_Icc {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {s : Set ι} {f : (i : ι) → α i} {g : (i : ι) → α i} :
              (Set.pi s fun i => Set.Ico (f i) (g i)) =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.pi μ)] Set.pi s fun i => Set.Icc (f i) (g i)
              theorem MeasureTheory.Measure.univ_pi_Ico_ae_eq_Icc {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), MeasureTheory.NoAtoms (μ i)] {f : (i : ι) → α i} {g : (i : ι) → α i} :
              theorem MeasureTheory.Measure.pi_noAtoms {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] {μ : (i : ι) → MeasureTheory.Measure (α i)} [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] (i : ι) [MeasureTheory.NoAtoms (μ i)] :

              If one of the measures μ i has no atoms, them Measure.pi µ has no atoms. The instance below assumes that all μ i have no atoms.

              instance MeasureTheory.Measure.instIsLocallyFiniteMeasureForAllToMeasurableSpacePiTopologicalSpaceVolume {ι : Type u_1} [Fintype ι] {X : ιType u_4} [(i : ι) → TopologicalSpace (X i)] [(i : ι) → MeasureTheory.MeasureSpace (X i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.IsLocallyFiniteMeasure MeasureTheory.volume] :
              Equations
              • One or more equations did not get rendered due to their size.
              theorem MeasureTheory.Measure.pi.isAddLeftInvariant.proof_1 {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → AddGroup (α i)] [∀ (i : ι), MeasurableAdd (α i)] [∀ (i : ι), MeasureTheory.Measure.IsAddLeftInvariant (μ i)] :
              instance MeasureTheory.Measure.instIsAddLeftInvariantForAllToMeasurableSpacePiInstAddToAddToAddZeroClassToAddMonoidToSubNegAddMonoidVolume {ι : Type u_1} [Fintype ι] {G : ιType u_4} [(i : ι) → AddGroup (G i)] [(i : ι) → MeasureTheory.MeasureSpace (G i)] [∀ (i : ι), MeasurableAdd (G i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.Measure.IsAddLeftInvariant MeasureTheory.volume] :
              Equations
              • One or more equations did not get rendered due to their size.
              instance MeasureTheory.Measure.instIsMulLeftInvariantForAllToMeasurableSpacePiInstMulToMulToMulOneClassToMonoidToDivInvMonoidVolume {ι : Type u_1} [Fintype ι] {G : ιType u_4} [(i : ι) → Group (G i)] [(i : ι) → MeasureTheory.MeasureSpace (G i)] [∀ (i : ι), MeasurableMul (G i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.Measure.IsMulLeftInvariant MeasureTheory.volume] :
              Equations
              • One or more equations did not get rendered due to their size.
              theorem MeasureTheory.Measure.pi.isAddRightInvariant.proof_1 {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → AddGroup (α i)] [∀ (i : ι), MeasurableAdd (α i)] [∀ (i : ι), MeasureTheory.Measure.IsAddRightInvariant (μ i)] :
              instance MeasureTheory.Measure.instIsAddRightInvariantForAllToMeasurableSpacePiInstAddToAddToAddZeroClassToAddMonoidToSubNegAddMonoidVolume {ι : Type u_1} [Fintype ι] {G : ιType u_4} [(i : ι) → AddGroup (G i)] [(i : ι) → MeasureTheory.MeasureSpace (G i)] [∀ (i : ι), MeasurableAdd (G i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.Measure.IsAddRightInvariant MeasureTheory.volume] :
              Equations
              • One or more equations did not get rendered due to their size.
              instance MeasureTheory.Measure.instIsMulRightInvariantForAllToMeasurableSpacePiInstMulToMulToMulOneClassToMonoidToDivInvMonoidVolume {ι : Type u_1} [Fintype ι] {G : ιType u_4} [(i : ι) → Group (G i)] [(i : ι) → MeasureTheory.MeasureSpace (G i)] [∀ (i : ι), MeasurableMul (G i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.Measure.IsMulRightInvariant MeasureTheory.volume] :
              Equations
              • One or more equations did not get rendered due to their size.
              theorem MeasureTheory.Measure.pi.isNegInvariant.proof_1 {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → AddGroup (α i)] [∀ (i : ι), MeasurableNeg (α i)] [∀ (i : ι), MeasureTheory.Measure.IsNegInvariant (μ i)] :
              instance MeasureTheory.Measure.instIsNegInvariantForAllToMeasurableSpacePiInstNegToNegToNegZeroClassToSubNegZeroAddMonoidToDivisionAddMonoidVolume {ι : Type u_1} [Fintype ι] {G : ιType u_4} [(i : ι) → AddGroup (G i)] [(i : ι) → MeasureTheory.MeasureSpace (G i)] [∀ (i : ι), MeasurableNeg (G i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.Measure.IsNegInvariant MeasureTheory.volume] :
              Equations
              • One or more equations did not get rendered due to their size.
              instance MeasureTheory.Measure.instIsInvInvariantForAllToMeasurableSpacePiInstInvToInvToInvOneClassToDivInvOneMonoidToDivisionMonoidVolume {ι : Type u_1} [Fintype ι] {G : ιType u_4} [(i : ι) → Group (G i)] [(i : ι) → MeasureTheory.MeasureSpace (G i)] [∀ (i : ι), MeasurableInv (G i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.Measure.IsInvInvariant MeasureTheory.volume] :
              Equations
              • One or more equations did not get rendered due to their size.
              instance MeasureTheory.Measure.instIsFiniteMeasureOnCompactsForAllToMeasurableSpacePiTopologicalSpaceVolume {ι : Type u_1} [Fintype ι] {X : ιType u_4} [(i : ι) → MeasureTheory.MeasureSpace (X i)] [(i : ι) → TopologicalSpace (X i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.IsFiniteMeasureOnCompacts MeasureTheory.volume] :
              Equations
              • One or more equations did not get rendered due to their size.
              theorem MeasureTheory.Measure.pi.isAddHaarMeasure.proof_1 {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → AddGroup (α i)] [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), MeasureTheory.Measure.IsAddHaarMeasure (μ i)] [∀ (i : ι), MeasurableAdd (α i)] :
              instance MeasureTheory.Measure.pi.isHaarMeasure {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] [(i : ι) → Group (α i)] [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), MeasureTheory.Measure.IsHaarMeasure (μ i)] [∀ (i : ι), MeasurableMul (α i)] :
              Equations
              theorem MeasureTheory.Measure.instIsAddHaarMeasureForAllAddGroupTopologicalSpaceToMeasurableSpacePiVolume.proof_1 {ι : Type u_1} [Fintype ι] {G : ιType u_2} [(i : ι) → AddGroup (G i)] [(i : ι) → MeasureTheory.MeasureSpace (G i)] [∀ (i : ι), MeasurableAdd (G i)] [(i : ι) → TopologicalSpace (G i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.Measure.IsAddHaarMeasure MeasureTheory.volume] :
              instance MeasureTheory.Measure.instIsAddHaarMeasureForAllAddGroupTopologicalSpaceToMeasurableSpacePiVolume {ι : Type u_1} [Fintype ι] {G : ιType u_4} [(i : ι) → AddGroup (G i)] [(i : ι) → MeasureTheory.MeasureSpace (G i)] [∀ (i : ι), MeasurableAdd (G i)] [(i : ι) → TopologicalSpace (G i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [∀ (i : ι), MeasureTheory.Measure.IsAddHaarMeasure MeasureTheory.volume] :
              Equations
              • One or more equations did not get rendered due to their size.
              theorem MeasureTheory.volume_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasureTheory.MeasureSpace (α i)] :
              MeasureTheory.volume = MeasureTheory.Measure.pi fun x => MeasureTheory.volume
              theorem MeasureTheory.volume_pi_pi {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasureTheory.MeasureSpace (α i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] (s : (i : ι) → Set (α i)) :
              MeasureTheory.volume (Set.pi Set.univ s) = Finset.prod Finset.univ fun i => MeasureTheory.volume (s i)
              theorem MeasureTheory.volume_pi_ball {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasureTheory.MeasureSpace (α i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [(i : ι) → MetricSpace (α i)] (x : (i : ι) → α i) {r : } (hr : 0 < r) :
              MeasureTheory.volume (Metric.ball x r) = Finset.prod Finset.univ fun i => MeasureTheory.volume (Metric.ball (x i) r)
              theorem MeasureTheory.volume_pi_closedBall {ι : Type u_1} {α : ιType u_3} [Fintype ι] [(i : ι) → MeasureTheory.MeasureSpace (α i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] [(i : ι) → MetricSpace (α i)] (x : (i : ι) → α i) {r : } (hr : 0 r) :
              MeasureTheory.volume (Metric.closedBall x r) = Finset.prod Finset.univ fun i => MeasureTheory.volume (Metric.closedBall (x i) r)

              We intentionally restrict this only to the nondependent function space, since type-class inference cannot find an instance for ι → ℝ when this is stated for dependent function spaces.

              Equations

              We intentionally restrict this only to the nondependent function space, since type-class inference cannot find an instance for ι → ℝ when this is stated for dependent function spaces.

              Equations

              We intentionally restrict this only to the nondependent function space, since type-class inference cannot find an instance for ι → ℝ when this is stated for dependent function spaces.

              Equations

              We intentionally restrict this only to the nondependent function space, since type-class inference cannot find an instance for ι → ℝ when this is stated for dependent function spaces.

              Equations

              Measure preserving equivalences #

              In this section we prove that some measurable equivalences (e.g., between Fin 1 → α and α or between Fin 2 → α and α × α) preserve measure or volume. These lemmas can be used to prove that measures of corresponding sets (images or preimages) have equal measures and functions f ∘ e and f have equal integrals, see lemmas in the MeasureTheory.measurePreserving prefix.

              theorem MeasureTheory.measurePreserving_piEquivPiSubtypeProd {ι : Type u} {α : ιType v} [Fintype ι] {m : (i : ι) → MeasurableSpace (α i)} (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.SigmaFinite (μ i)] (p : ιProp) [DecidablePred p] :
              theorem MeasureTheory.measurePreserving_piFinSuccAboveEquiv {n : } {α : Fin (n + 1)Type u} {m : (i : Fin (n + 1)) → MeasurableSpace (α i)} (μ : (i : Fin (n + 1)) → MeasureTheory.Measure (α i)) [∀ (i : Fin (n + 1)), MeasureTheory.SigmaFinite (μ i)] (i : Fin (n + 1)) :
              theorem MeasureTheory.volume_preserving_piFinSuccAboveEquiv {n : } (α : Fin (n + 1)Type u) [(i : Fin (n + 1)) → MeasureTheory.MeasureSpace (α i)] [∀ (i : Fin (n + 1)), MeasureTheory.SigmaFinite MeasureTheory.volume] (i : Fin (n + 1)) :
              theorem MeasureTheory.measurePreserving_pi_empty {ι : Type u} {α : ιType v} [IsEmpty ι] {m : (i : ι) → MeasurableSpace (α i)} (μ : (i : ι) → MeasureTheory.Measure (α i)) :