Documentation

Mathlib.Data.Set.Prod

Sets in product and pi types #

This file defines the product of sets in α × β and in Π i, α i along with the diagonal of a type.

Main declarations #

Cartesian binary product of sets #

def Set.prod {α : Type u_1} {β : Type u_2} (s : Set α) (t : Set β) :
Set (α × β)

The cartesian product Set.prod s t is the set of (a, b) such that a ∈ s and b ∈ t.

Equations
Instances For
    @[defaultInstance 1000]
    instance Set.instSProd {α : Type u_1} {β : Type u_2} :
    SProd (Set α) (Set β) (Set (α × β))
    Equations
    • Set.instSProd = { sprod := Set.prod }
    theorem Set.prod_eq {α : Type u_1} {β : Type u_2} (s : Set α) (t : Set β) :
    s ×ˢ t = Prod.fst ⁻¹' s Prod.snd ⁻¹' t
    theorem Set.mem_prod_eq {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {p : α × β} :
    (p s ×ˢ t) = (p.fst s p.snd t)
    @[simp]
    theorem Set.mem_prod {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {p : α × β} :
    p s ×ˢ t p.fst s p.snd t
    theorem Set.prod_mk_mem_set_prod_eq {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {a : α} {b : β} :
    ((a, b) s ×ˢ t) = (a s b t)
    theorem Set.mk_mem_prod {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {a : α} {b : β} (ha : a s) (hb : b t) :
    (a, b) s ×ˢ t
    theorem Set.Subsingleton.prod {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} (hs : Set.Subsingleton s) (ht : Set.Subsingleton t) :
    noncomputable instance Set.decidableMemProd {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} [DecidablePred fun x => x s] [DecidablePred fun x => x t] :
    DecidablePred fun x => x s ×ˢ t
    Equations
    theorem Set.prod_mono {α : Type u_1} {β : Type u_2} {s₁ : Set α} {s₂ : Set α} {t₁ : Set β} {t₂ : Set β} (hs : s₁ s₂) (ht : t₁ t₂) :
    s₁ ×ˢ t₁ s₂ ×ˢ t₂
    theorem Set.prod_mono_left {α : Type u_1} {β : Type u_2} {s₁ : Set α} {s₂ : Set α} {t : Set β} (hs : s₁ s₂) :
    s₁ ×ˢ t s₂ ×ˢ t
    theorem Set.prod_mono_right {α : Type u_1} {β : Type u_2} {s : Set α} {t₁ : Set β} {t₂ : Set β} (ht : t₁ t₂) :
    s ×ˢ t₁ s ×ˢ t₂
    @[simp]
    theorem Set.prod_self_subset_prod_self {α : Type u_1} {s₁ : Set α} {s₂ : Set α} :
    s₁ ×ˢ s₁ s₂ ×ˢ s₂ s₁ s₂
    @[simp]
    theorem Set.prod_self_ssubset_prod_self {α : Type u_1} {s₁ : Set α} {s₂ : Set α} :
    s₁ ×ˢ s₁ s₂ ×ˢ s₂ s₁ s₂
    theorem Set.prod_subset_iff {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {P : Set (α × β)} :
    s ×ˢ t P ∀ (x : α), x s∀ (y : β), y t(x, y) P
    theorem Set.forall_prod_set {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {p : α × βProp} :
    ((x : α × β) → x s ×ˢ tp x) (x : α) → x s(y : β) → y tp (x, y)
    theorem Set.exists_prod_set {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {p : α × βProp} :
    (x, x s ×ˢ t p x) x, x s y, y t p (x, y)
    @[simp]
    theorem Set.prod_empty {α : Type u_1} {β : Type u_2} {s : Set α} :
    @[simp]
    theorem Set.empty_prod {α : Type u_1} {β : Type u_2} {t : Set β} :
    @[simp]
    theorem Set.univ_prod_univ {α : Type u_1} {β : Type u_2} :
    Set.univ ×ˢ Set.univ = Set.univ
    theorem Set.univ_prod {α : Type u_1} {β : Type u_2} {t : Set β} :
    Set.univ ×ˢ t = Prod.snd ⁻¹' t
    theorem Set.prod_univ {α : Type u_1} {β : Type u_2} {s : Set α} :
    s ×ˢ Set.univ = Prod.fst ⁻¹' s
    @[simp]
    theorem Set.singleton_prod {α : Type u_1} {β : Type u_2} {t : Set β} {a : α} :
    {a} ×ˢ t = Prod.mk a '' t
    @[simp]
    theorem Set.prod_singleton {α : Type u_1} {β : Type u_2} {s : Set α} {b : β} :
    s ×ˢ {b} = (fun a => (a, b)) '' s
    theorem Set.singleton_prod_singleton {α : Type u_1} {β : Type u_2} {a : α} {b : β} :
    {a} ×ˢ {b} = {(a, b)}
    @[simp]
    theorem Set.union_prod {α : Type u_1} {β : Type u_2} {s₁ : Set α} {s₂ : Set α} {t : Set β} :
    (s₁ s₂) ×ˢ t = s₁ ×ˢ t s₂ ×ˢ t
    @[simp]
    theorem Set.prod_union {α : Type u_1} {β : Type u_2} {s : Set α} {t₁ : Set β} {t₂ : Set β} :
    s ×ˢ (t₁ t₂) = s ×ˢ t₁ s ×ˢ t₂
    theorem Set.inter_prod {α : Type u_1} {β : Type u_2} {s₁ : Set α} {s₂ : Set α} {t : Set β} :
    (s₁ s₂) ×ˢ t = s₁ ×ˢ t s₂ ×ˢ t
    theorem Set.prod_inter {α : Type u_1} {β : Type u_2} {s : Set α} {t₁ : Set β} {t₂ : Set β} :
    s ×ˢ (t₁ t₂) = s ×ˢ t₁ s ×ˢ t₂
    theorem Set.prod_inter_prod {α : Type u_1} {β : Type u_2} {s₁ : Set α} {s₂ : Set α} {t₁ : Set β} {t₂ : Set β} :
    s₁ ×ˢ t₁ s₂ ×ˢ t₂ = (s₁ s₂) ×ˢ (t₁ t₂)
    theorem Set.compl_prod_eq_union {α : Type u_5} {β : Type u_6} (s : Set α) (t : Set β) :
    (s ×ˢ t) = s ×ˢ Set.univ Set.univ ×ˢ t
    @[simp]
    theorem Set.disjoint_prod {α : Type u_1} {β : Type u_2} {s₁ : Set α} {s₂ : Set α} {t₁ : Set β} {t₂ : Set β} :
    Disjoint (s₁ ×ˢ t₁) (s₂ ×ˢ t₂) Disjoint s₁ s₂ Disjoint t₁ t₂
    theorem Set.Disjoint.set_prod_left {α : Type u_1} {β : Type u_2} {s₁ : Set α} {s₂ : Set α} (hs : Disjoint s₁ s₂) (t₁ : Set β) (t₂ : Set β) :
    Disjoint (s₁ ×ˢ t₁) (s₂ ×ˢ t₂)
    theorem Set.Disjoint.set_prod_right {α : Type u_1} {β : Type u_2} {t₁ : Set β} {t₂ : Set β} (ht : Disjoint t₁ t₂) (s₁ : Set α) (s₂ : Set α) :
    Disjoint (s₁ ×ˢ t₁) (s₂ ×ˢ t₂)
    theorem Set.insert_prod {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {a : α} :
    insert a s ×ˢ t = Prod.mk a '' t s ×ˢ t
    theorem Set.prod_insert {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {b : β} :
    s ×ˢ insert b t = (fun a => (a, b)) '' s s ×ˢ t
    theorem Set.prod_preimage_eq {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {s : Set α} {t : Set β} {f : γα} {g : δβ} :
    (f ⁻¹' s) ×ˢ (g ⁻¹' t) = (fun p => (f p.fst, g p.snd)) ⁻¹' s ×ˢ t
    theorem Set.prod_preimage_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {s : Set α} {t : Set β} {f : γα} :
    (f ⁻¹' s) ×ˢ t = (fun p => (f p.fst, p.snd)) ⁻¹' s ×ˢ t
    theorem Set.prod_preimage_right {α : Type u_1} {β : Type u_2} {δ : Type u_4} {s : Set α} {t : Set β} {g : δβ} :
    s ×ˢ (g ⁻¹' t) = (fun p => (p.fst, g p.snd)) ⁻¹' s ×ˢ t
    theorem Set.preimage_prod_map_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (f : αβ) (g : γδ) (s : Set β) (t : Set δ) :
    Prod.map f g ⁻¹' s ×ˢ t = (f ⁻¹' s) ×ˢ (g ⁻¹' t)
    theorem Set.mk_preimage_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {s : Set α} {t : Set β} (f : γα) (g : γβ) :
    (fun x => (f x, g x)) ⁻¹' s ×ˢ t = f ⁻¹' s g ⁻¹' t
    @[simp]
    theorem Set.mk_preimage_prod_left {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {b : β} (hb : b t) :
    (fun a => (a, b)) ⁻¹' s ×ˢ t = s
    @[simp]
    theorem Set.mk_preimage_prod_right {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {a : α} (ha : a s) :
    @[simp]
    theorem Set.mk_preimage_prod_left_eq_empty {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {b : β} (hb : ¬b t) :
    (fun a => (a, b)) ⁻¹' s ×ˢ t =
    @[simp]
    theorem Set.mk_preimage_prod_right_eq_empty {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {a : α} (ha : ¬a s) :
    theorem Set.mk_preimage_prod_left_eq_if {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {b : β} [DecidablePred fun x => x t] :
    (fun a => (a, b)) ⁻¹' s ×ˢ t = if b t then s else
    theorem Set.mk_preimage_prod_right_eq_if {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {a : α} [DecidablePred fun x => x s] :
    Prod.mk a ⁻¹' s ×ˢ t = if a s then t else
    theorem Set.mk_preimage_prod_left_fn_eq_if {α : Type u_1} {β : Type u_2} {γ : Type u_3} {s : Set α} {t : Set β} {b : β} [DecidablePred fun x => x t] (f : γα) :
    (fun a => (f a, b)) ⁻¹' s ×ˢ t = if b t then f ⁻¹' s else
    theorem Set.mk_preimage_prod_right_fn_eq_if {α : Type u_1} {β : Type u_2} {δ : Type u_4} {s : Set α} {t : Set β} {a : α} [DecidablePred fun x => x s] (g : δβ) :
    (fun b => (a, g b)) ⁻¹' s ×ˢ t = if a s then g ⁻¹' t else
    @[simp]
    theorem Set.preimage_swap_prod {α : Type u_1} {β : Type u_2} (s : Set α) (t : Set β) :
    Prod.swap ⁻¹' s ×ˢ t = t ×ˢ s
    @[simp]
    theorem Set.image_swap_prod {α : Type u_1} {β : Type u_2} (s : Set α) (t : Set β) :
    Prod.swap '' s ×ˢ t = t ×ˢ s
    theorem Set.prod_image_image_eq {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {s : Set α} {t : Set β} {m₁ : αγ} {m₂ : βδ} :
    (m₁ '' s) ×ˢ (m₂ '' t) = (fun p => (m₁ p.fst, m₂ p.snd)) '' s ×ˢ t
    theorem Set.prod_range_range_eq {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {m₁ : αγ} {m₂ : βδ} :
    Set.range m₁ ×ˢ Set.range m₂ = Set.range fun p => (m₁ p.fst, m₂ p.snd)
    @[simp]
    theorem Set.range_prod_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {m₁ : αγ} {m₂ : βδ} :
    Set.range (Prod.map m₁ m₂) = Set.range m₁ ×ˢ Set.range m₂
    theorem Set.prod_range_univ_eq {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m₁ : αγ} :
    Set.range m₁ ×ˢ Set.univ = Set.range fun p => (m₁ p.fst, p.snd)
    theorem Set.prod_univ_range_eq {α : Type u_1} {β : Type u_2} {δ : Type u_4} {m₂ : βδ} :
    Set.univ ×ˢ Set.range m₂ = Set.range fun p => (p.fst, m₂ p.snd)
    theorem Set.range_pair_subset {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβ) (g : αγ) :
    (Set.range fun x => (f x, g x)) Set.range f ×ˢ Set.range g
    theorem Set.Nonempty.prod {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} :
    theorem Set.Nonempty.fst {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} :
    theorem Set.Nonempty.snd {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} :
    @[simp]
    theorem Set.prod_nonempty_iff {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} :
    @[simp]
    theorem Set.prod_eq_empty_iff {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} :
    s ×ˢ t = s = t =
    theorem Set.prod_sub_preimage_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {s : Set α} {t : Set β} {W : Set γ} {f : α × βγ} :
    s ×ˢ t f ⁻¹' W ∀ (a : α) (b : β), a sb tf (a, b) W
    theorem Set.image_prod_mk_subset_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβ} {g : αγ} {s : Set α} :
    (fun x => (f x, g x)) '' s (f '' s) ×ˢ (g '' s)
    theorem Set.image_prod_mk_subset_prod_left {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {b : β} (hb : b t) :
    (fun a => (a, b)) '' s s ×ˢ t
    theorem Set.image_prod_mk_subset_prod_right {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {a : α} (ha : a s) :
    Prod.mk a '' t s ×ˢ t
    theorem Set.prod_subset_preimage_fst {α : Type u_1} {β : Type u_2} (s : Set α) (t : Set β) :
    s ×ˢ t Prod.fst ⁻¹' s
    theorem Set.fst_image_prod_subset {α : Type u_1} {β : Type u_2} (s : Set α) (t : Set β) :
    Prod.fst '' s ×ˢ t s
    theorem Set.fst_image_prod {α : Type u_1} {β : Type u_2} (s : Set β) {t : Set α} (ht : Set.Nonempty t) :
    Prod.fst '' s ×ˢ t = s
    theorem Set.prod_subset_preimage_snd {α : Type u_1} {β : Type u_2} (s : Set α) (t : Set β) :
    s ×ˢ t Prod.snd ⁻¹' t
    theorem Set.snd_image_prod_subset {α : Type u_1} {β : Type u_2} (s : Set α) (t : Set β) :
    Prod.snd '' s ×ˢ t t
    theorem Set.snd_image_prod {α : Type u_1} {β : Type u_2} {s : Set α} (hs : Set.Nonempty s) (t : Set β) :
    Prod.snd '' s ×ˢ t = t
    theorem Set.prod_diff_prod {α : Type u_1} {β : Type u_2} {s : Set α} {s₁ : Set α} {t : Set β} {t₁ : Set β} :
    s ×ˢ t \ s₁ ×ˢ t₁ = s ×ˢ (t \ t₁) (s \ s₁) ×ˢ t
    theorem Set.prod_subset_prod_iff {α : Type u_1} {β : Type u_2} {s : Set α} {s₁ : Set α} {t : Set β} {t₁ : Set β} :
    s ×ˢ t s₁ ×ˢ t₁ s s₁ t t₁ s = t =

    A product set is included in a product set if and only factors are included, or a factor of the first set is empty.

    theorem Set.prod_eq_prod_iff_of_nonempty {α : Type u_1} {β : Type u_2} {s : Set α} {s₁ : Set α} {t : Set β} {t₁ : Set β} (h : Set.Nonempty (s ×ˢ t)) :
    s ×ˢ t = s₁ ×ˢ t₁ s = s₁ t = t₁
    theorem Set.prod_eq_prod_iff {α : Type u_1} {β : Type u_2} {s : Set α} {s₁ : Set α} {t : Set β} {t₁ : Set β} :
    s ×ˢ t = s₁ ×ˢ t₁ s = s₁ t = t₁ (s = t = ) (s₁ = t₁ = )
    @[simp]
    theorem Set.prod_eq_iff_eq {α : Type u_1} {β : Type u_2} {s : Set α} {s₁ : Set α} {t : Set β} (ht : Set.Nonempty t) :
    s ×ˢ t = s₁ ×ˢ t s = s₁
    theorem Monotone.set_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] {f : αSet β} {g : αSet γ} (hf : Monotone f) (hg : Monotone g) :
    Monotone fun x => f x ×ˢ g x
    theorem Antitone.set_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] {f : αSet β} {g : αSet γ} (hf : Antitone f) (hg : Antitone g) :
    Antitone fun x => f x ×ˢ g x
    theorem MonotoneOn.set_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {s : Set α} [Preorder α] {f : αSet β} {g : αSet γ} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
    MonotoneOn (fun x => f x ×ˢ g x) s
    theorem AntitoneOn.set_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {s : Set α} [Preorder α] {f : αSet β} {g : αSet γ} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
    AntitoneOn (fun x => f x ×ˢ g x) s

    Diagonal #

    In this section we prove some lemmas about the diagonal set {p | p.1 = p.2} and the diagonal map fun x ↦ (x, x).

    def Set.diagonal (α : Type u_2) :
    Set (α × α)

    diagonal α is the set of α × α consisting of all pairs of the form (a, a).

    Equations
    Instances For
      theorem Set.mem_diagonal {α : Type u_1} (x : α) :
      (x, x) Set.diagonal α
      @[simp]
      theorem Set.mem_diagonal_iff {α : Type u_1} {x : α × α} :
      x Set.diagonal α x.fst = x.snd
      instance Set.decidableMemDiagonal {α : Type u_1} [h : DecidableEq α] (x : α × α) :
      Equations
      theorem Set.preimage_coe_coe_diagonal {α : Type u_1} (s : Set α) :
      (Prod.map (fun x => x) fun x => x) ⁻¹' Set.diagonal α = Set.diagonal s
      @[simp]
      theorem Set.range_diag {α : Type u_1} :
      (Set.range fun x => (x, x)) = Set.diagonal α
      theorem Set.diagonal_subset_iff {α : Type u_1} {s : Set (α × α)} :
      Set.diagonal α s ∀ (x : α), (x, x) s
      @[simp]
      theorem Set.prod_subset_compl_diagonal_iff_disjoint {α : Type u_1} {s : Set α} {t : Set α} :
      @[simp]
      theorem Set.diag_preimage_prod {α : Type u_1} (s : Set α) (t : Set α) :
      (fun x => (x, x)) ⁻¹' s ×ˢ t = s t
      theorem Set.diag_preimage_prod_self {α : Type u_1} (s : Set α) :
      (fun x => (x, x)) ⁻¹' s ×ˢ s = s
      theorem Set.diag_image {α : Type u_1} (s : Set α) :
      (fun x => (x, x)) '' s = Set.diagonal α s ×ˢ s
      def Set.offDiag {α : Type u_1} (s : Set α) :
      Set (α × α)

      The off-diagonal of a set s is the set of pairs (a, b) with a, b ∈ s and a ≠ b.

      Equations
      Instances For
        @[simp]
        theorem Set.mem_offDiag {α : Type u_1} {s : Set α} {x : α × α} :
        x Set.offDiag s x.fst s x.snd s x.fst x.snd
        theorem Set.offDiag_mono {α : Type u_1} :
        Monotone Set.offDiag
        @[simp]
        @[simp]

        Alias of the reverse direction of Set.offDiag_nonempty.

        Alias of the reverse direction of Set.offDiag_nonempty.

        theorem Set.offDiag_subset_prod {α : Type u_1} (s : Set α) :
        theorem Set.offDiag_eq_sep_prod {α : Type u_1} (s : Set α) :
        Set.offDiag s = {x | x s ×ˢ s x.fst x.snd}
        @[simp]
        @[simp]
        theorem Set.offDiag_singleton {α : Type u_1} (a : α) :
        @[simp]
        theorem Set.offDiag_univ {α : Type u_1} :
        @[simp]
        theorem Set.prod_sdiff_diagonal {α : Type u_1} (s : Set α) :
        @[simp]
        theorem Set.offDiag_inter {α : Type u_1} (s : Set α) (t : Set α) :
        theorem Set.offDiag_union {α : Type u_1} {s : Set α} {t : Set α} (h : Disjoint s t) :
        theorem Set.offDiag_insert {α : Type u_1} {s : Set α} {a : α} (ha : ¬a s) :

        Cartesian set-indexed product of sets #

        def Set.pi {ι : Type u_1} {α : ιType u_2} (s : Set ι) (t : (i : ι) → Set (α i)) :
        Set ((i : ι) → α i)

        Given an index set ι and a family of sets t : Π i, Set (α i), pi s t is the set of dependent functions f : Πa, π a such that f a belongs to t a whenever a ∈ s.

        Equations
        Instances For
          @[simp]
          theorem Set.mem_pi {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} {f : (i : ι) → α i} :
          f Set.pi s t ∀ (i : ι), i sf i t i
          theorem Set.mem_univ_pi {ι : Type u_1} {α : ιType u_2} {t : (i : ι) → Set (α i)} {f : (i : ι) → α i} :
          f Set.pi Set.univ t ∀ (i : ι), f i t i
          @[simp]
          theorem Set.empty_pi {ι : Type u_1} {α : ιType u_2} (s : (i : ι) → Set (α i)) :
          Set.pi s = Set.univ
          theorem Set.subsingleton_univ_pi {ι : Type u_1} {α : ιType u_2} {t : (i : ι) → Set (α i)} (ht : ∀ (i : ι), Set.Subsingleton (t i)) :
          @[simp]
          theorem Set.pi_univ {ι : Type u_1} {α : ιType u_2} (s : Set ι) :
          (Set.pi s fun i => Set.univ) = Set.univ
          @[simp]
          theorem Set.pi_univ_ite {ι : Type u_1} {α : ιType u_2} (s : Set ι) [DecidablePred fun x => x s] (t : (i : ι) → Set (α i)) :
          (Set.pi Set.univ fun i => if i s then t i else Set.univ) = Set.pi s t
          theorem Set.pi_mono {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} (h : ∀ (i : ι), i st₁ i t₂ i) :
          Set.pi s t₁ Set.pi s t₂
          theorem Set.pi_inter_distrib {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} {t₁ : (i : ι) → Set (α i)} :
          (Set.pi s fun i => t i t₁ i) = Set.pi s t Set.pi s t₁
          theorem Set.pi_congr {ι : Type u_1} {α : ιType u_2} {s₁ : Set ι} {s₂ : Set ι} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} (h : s₁ = s₂) (h' : ∀ (i : ι), i s₁t₁ i = t₂ i) :
          Set.pi s₁ t₁ = Set.pi s₂ t₂
          theorem Set.pi_eq_empty {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} (hs : i s) (ht : t i = ) :
          theorem Set.univ_pi_eq_empty {ι : Type u_1} {α : ιType u_2} {t : (i : ι) → Set (α i)} {i : ι} (ht : t i = ) :
          Set.pi Set.univ t =
          theorem Set.pi_nonempty_iff {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} :
          Set.Nonempty (Set.pi s t) ∀ (i : ι), x, i sx t i
          theorem Set.univ_pi_nonempty_iff {ι : Type u_1} {α : ιType u_2} {t : (i : ι) → Set (α i)} :
          Set.Nonempty (Set.pi Set.univ t) ∀ (i : ι), Set.Nonempty (t i)
          theorem Set.pi_eq_empty_iff {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} :
          Set.pi s t = i, IsEmpty (α i) i s t i =
          @[simp]
          theorem Set.univ_pi_eq_empty_iff {ι : Type u_1} {α : ιType u_2} {t : (i : ι) → Set (α i)} :
          Set.pi Set.univ t = i, t i =
          @[simp]
          theorem Set.univ_pi_empty {ι : Type u_1} {α : ιType u_2} [h : Nonempty ι] :
          (Set.pi Set.univ fun x => ) =
          @[simp]
          theorem Set.disjoint_univ_pi {ι : Type u_1} {α : ιType u_2} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} :
          Disjoint (Set.pi Set.univ t₁) (Set.pi Set.univ t₂) i, Disjoint (t₁ i) (t₂ i)
          theorem Set.Disjoint.set_pi {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} {i : ι} (hi : i s) (ht : Disjoint (t₁ i) (t₂ i)) :
          Disjoint (Set.pi s t₁) (Set.pi s t₂)
          theorem Set.pi_eq_empty_iff' {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} [∀ (i : ι), Nonempty (α i)] :
          Set.pi s t = i, i s t i =
          @[simp]
          theorem Set.disjoint_pi {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} [∀ (i : ι), Nonempty (α i)] :
          Disjoint (Set.pi s t₁) (Set.pi s t₂) i, i s Disjoint (t₁ i) (t₂ i)
          theorem Set.range_dcomp {ι : Type u_1} {α : ιType u_2} {β : ιType u_3} (f : (i : ι) → α iβ i) :
          (Set.range fun g i => f i (g i)) = Set.pi Set.univ fun i => Set.range (f i)
          @[simp]
          theorem Set.insert_pi {ι : Type u_1} {α : ιType u_2} (i : ι) (s : Set ι) (t : (i : ι) → Set (α i)) :
          @[simp]
          theorem Set.singleton_pi {ι : Type u_1} {α : ιType u_2} (i : ι) (t : (i : ι) → Set (α i)) :
          theorem Set.singleton_pi' {ι : Type u_1} {α : ιType u_2} (i : ι) (t : (i : ι) → Set (α i)) :
          Set.pi {i} t = {x | x i t i}
          theorem Set.univ_pi_singleton {ι : Type u_1} {α : ιType u_2} (f : (i : ι) → α i) :
          (Set.pi Set.univ fun i => {f i}) = {f}
          theorem Set.preimage_pi {ι : Type u_1} {α : ιType u_2} {β : ιType u_3} (s : Set ι) (t : (i : ι) → Set (β i)) (f : (i : ι) → α iβ i) :
          (fun g i => f i (g i)) ⁻¹' Set.pi s t = Set.pi s fun i => f i ⁻¹' t i
          theorem Set.pi_if {ι : Type u_1} {α : ιType u_2} {p : ιProp} [h : DecidablePred p] (s : Set ι) (t₁ : (i : ι) → Set (α i)) (t₂ : (i : ι) → Set (α i)) :
          (Set.pi s fun i => if p i then t₁ i else t₂ i) = Set.pi {i | i s p i} t₁ Set.pi {i | i s ¬p i} t₂
          theorem Set.union_pi {ι : Type u_1} {α : ιType u_2} {s₁ : Set ι} {s₂ : Set ι} {t : (i : ι) → Set (α i)} :
          Set.pi (s₁ s₂) t = Set.pi s₁ t Set.pi s₂ t
          @[simp]
          theorem Set.pi_inter_compl {ι : Type u_1} {α : ιType u_2} {t : (i : ι) → Set (α i)} (s : Set ι) :
          Set.pi s t Set.pi s t = Set.pi Set.univ t
          theorem Set.pi_update_of_not_mem {ι : Type u_1} {α : ιType u_2} {β : ιType u_3} {s : Set ι} {i : ι} [DecidableEq ι] (hi : ¬i s) (f : (j : ι) → α j) (a : α i) (t : (j : ι) → α jSet (β j)) :
          (Set.pi s fun j => t j (Function.update f i a j)) = Set.pi s fun j => t j (f j)
          theorem Set.pi_update_of_mem {ι : Type u_1} {α : ιType u_2} {β : ιType u_3} {s : Set ι} {i : ι} [DecidableEq ι] (hi : i s) (f : (j : ι) → α j) (a : α i) (t : (j : ι) → α jSet (β j)) :
          (Set.pi s fun j => t j (Function.update f i a j)) = {x | x i t i a} Set.pi (s \ {i}) fun j => t j (f j)
          theorem Set.univ_pi_update {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] {β : ιType u_4} (i : ι) (f : (j : ι) → α j) (a : α i) (t : (j : ι) → α jSet (β j)) :
          (Set.pi Set.univ fun j => t j (Function.update f i a j)) = {x | x i t i a} Set.pi {i} fun j => t j (f j)
          theorem Set.univ_pi_update_univ {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] (i : ι) (s : Set (α i)) :
          Set.pi Set.univ (Function.update (fun j => Set.univ) i s) = Function.eval i ⁻¹' s
          theorem Set.eval_image_pi_subset {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} (hs : i s) :
          theorem Set.eval_image_univ_pi_subset {ι : Type u_1} {α : ιType u_2} {t : (i : ι) → Set (α i)} {i : ι} :
          Function.eval i '' Set.pi Set.univ t t i
          theorem Set.subset_eval_image_pi {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} (ht : Set.Nonempty (Set.pi s t)) (i : ι) :
          theorem Set.eval_image_pi {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} (hs : i s) (ht : Set.Nonempty (Set.pi s t)) :
          @[simp]
          theorem Set.eval_image_univ_pi {ι : Type u_1} {α : ιType u_2} {t : (i : ι) → Set (α i)} {i : ι} (ht : Set.Nonempty (Set.pi Set.univ t)) :
          (fun f => f i) '' Set.pi Set.univ t = t i
          theorem Set.pi_subset_pi_iff {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} :
          Set.pi s t₁ Set.pi s t₂ (∀ (i : ι), i st₁ i t₂ i) Set.pi s t₁ =
          theorem Set.univ_pi_subset_univ_pi_iff {ι : Type u_1} {α : ιType u_2} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} :
          Set.pi Set.univ t₁ Set.pi Set.univ t₂ (∀ (i : ι), t₁ i t₂ i) i, t₁ i =
          theorem Set.eval_preimage {ι : Type u_1} {α : ιType u_2} {i : ι} [DecidableEq ι] {s : Set (α i)} :
          Function.eval i ⁻¹' s = Set.pi Set.univ (Function.update (fun i => Set.univ) i s)
          theorem Set.eval_preimage' {ι : Type u_1} {α : ιType u_2} {i : ι} [DecidableEq ι] {s : Set (α i)} :
          Function.eval i ⁻¹' s = Set.pi {i} (Function.update (fun i => Set.univ) i s)
          theorem Set.update_preimage_pi {ι : Type u_1} {α : ιType u_2} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} [DecidableEq ι] {f : (i : ι) → α i} (hi : i s) (hf : ∀ (j : ι), j sj if j t j) :
          theorem Set.update_preimage_univ_pi {ι : Type u_1} {α : ιType u_2} {t : (i : ι) → Set (α i)} {i : ι} [DecidableEq ι] {f : (i : ι) → α i} (hf : ∀ (j : ι), j if j t j) :
          Function.update f i ⁻¹' Set.pi Set.univ t = t i
          theorem Set.subset_pi_eval_image {ι : Type u_1} {α : ιType u_2} (s : Set ι) (u : Set ((i : ι) → α i)) :
          u Set.pi s fun i => Function.eval i '' u
          theorem Set.univ_pi_ite {ι : Type u_1} {α : ιType u_2} (s : Set ι) [DecidablePred fun x => x s] (t : (i : ι) → Set (α i)) :
          (Set.pi Set.univ fun i => if i s then t i else Set.univ) = Set.pi s t
          theorem Equiv.piCongrLeft_symm_preimage_pi {ι : Type u_1} {ι' : Type u_2} {α : ιType u_3} (f : ι' ι) (s : Set ι') (t : (i : ι) → Set (α i)) :
          ((Equiv.piCongrLeft α f).symm ⁻¹' Set.pi s fun i' => t (f i')) = Set.pi (f '' s) t
          theorem Equiv.piCongrLeft_symm_preimage_univ_pi {ι : Type u_1} {ι' : Type u_2} {α : ιType u_3} (f : ι' ι) (t : (i : ι) → Set (α i)) :
          ((Equiv.piCongrLeft α f).symm ⁻¹' Set.pi Set.univ fun i' => t (f i')) = Set.pi Set.univ t
          theorem Equiv.piCongrLeft_preimage_pi {ι : Type u_1} {ι' : Type u_2} {α : ιType u_3} (f : ι' ι) (s : Set ι') (t : (i : ι) → Set (α i)) :
          ↑(Equiv.piCongrLeft α f) ⁻¹' Set.pi (f '' s) t = Set.pi s fun i => t (f i)
          theorem Equiv.piCongrLeft_preimage_univ_pi {ι : Type u_1} {ι' : Type u_2} {α : ιType u_3} (f : ι' ι) (t : (i : ι) → Set (α i)) :
          ↑(Equiv.piCongrLeft α f) ⁻¹' Set.pi Set.univ t = Set.pi Set.univ fun i => t (f i)
          theorem Equiv.sumPiEquivProdPi_symm_preimage_univ_pi {ι : Type u_1} {ι' : Type u_2} (π : ι ι'Type u_4) (t : (i : ι ι') → Set (π i)) :
          (Equiv.sumPiEquivProdPi π).symm ⁻¹' Set.pi Set.univ t = (Set.pi Set.univ fun i => t (Sum.inl i)) ×ˢ Set.pi Set.univ fun i => t (Sum.inr i)