Measures positive on nonempty opens #
In this file we define a typeclass for measures that are positive on nonempty opens, see
MeasureTheory.Measure.IsOpenPosMeasure
. Examples include (additive) Haar measures, as well as
measures that have positive density with respect to a Haar measure. We also prove some basic facts
about these measures.
class
MeasureTheory.Measure.IsOpenPosMeasure
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
:
- open_pos : ∀ (U : Set X), IsOpen U → Set.Nonempty U → ↑↑μ U ≠ 0
A measure is said to be IsOpenPosMeasure
if it is positive on nonempty open sets.
Instances
theorem
IsOpen.measure_ne_zero
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{U : Set X}
(hU : IsOpen U)
(hne : Set.Nonempty U)
:
↑↑μ U ≠ 0
theorem
IsOpen.measure_pos
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{U : Set X}
(hU : IsOpen U)
(hne : Set.Nonempty U)
:
0 < ↑↑μ U
instance
MeasureTheory.Measure.instNeZeroMeasureInstZero
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[Nonempty X]
:
NeZero μ
theorem
IsOpen.measure_pos_iff
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{U : Set X}
(hU : IsOpen U)
:
0 < ↑↑μ U ↔ Set.Nonempty U
theorem
IsOpen.measure_eq_zero_iff
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{U : Set X}
(hU : IsOpen U)
:
theorem
MeasureTheory.Measure.measure_pos_of_nonempty_interior
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{s : Set X}
(h : Set.Nonempty (interior s))
:
0 < ↑↑μ s
theorem
MeasureTheory.Measure.measure_pos_of_mem_nhds
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{s : Set X}
{x : X}
(h : s ∈ nhds x)
:
0 < ↑↑μ s
theorem
MeasureTheory.Measure.isOpenPosMeasure_smul
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{c : ENNReal}
(h : c ≠ 0)
:
theorem
MeasureTheory.Measure.AbsolutelyContinuous.isOpenPosMeasure
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
{ν : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
(h : MeasureTheory.Measure.AbsolutelyContinuous μ ν)
:
theorem
LE.le.isOpenPosMeasure
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
{ν : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
(h : μ ≤ ν)
:
theorem
IsOpen.measure_zero_iff_eq_empty
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{U : Set X}
(hU : IsOpen U)
:
theorem
IsOpen.ae_eq_empty_iff_eq
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{U : Set X}
(hU : IsOpen U)
:
theorem
IsOpen.eq_empty_of_measure_zero
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{U : Set X}
(hU : IsOpen U)
(h₀ : ↑↑μ U = 0)
:
theorem
IsClosed.ae_eq_univ_iff_eq
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{F : Set X}
(hF : IsClosed F)
:
F =ᶠ[MeasureTheory.Measure.ae μ] Set.univ ↔ F = Set.univ
theorem
IsClosed.measure_eq_univ_iff_eq
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{F : Set X}
[OpensMeasurableSpace X]
[MeasureTheory.IsFiniteMeasure μ]
(hF : IsClosed F)
:
theorem
IsClosed.measure_eq_one_iff_eq_univ
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{F : Set X}
[OpensMeasurableSpace X]
[MeasureTheory.IsProbabilityMeasure μ]
(hF : IsClosed F)
:
theorem
MeasureTheory.Measure.interior_eq_empty_of_null
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{s : Set X}
(hs : ↑↑μ s = 0)
:
theorem
MeasureTheory.Measure.eqOn_open_of_ae_eq
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
{m : MeasurableSpace X}
[TopologicalSpace Y]
[T2Space Y]
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{U : Set X}
{f : X → Y}
{g : X → Y}
(h : f =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.restrict μ U)] g)
(hU : IsOpen U)
(hf : ContinuousOn f U)
(hg : ContinuousOn g U)
:
Set.EqOn f g U
If two functions are a.e. equal on an open set and are continuous on this set, then they are equal on this set.
theorem
MeasureTheory.Measure.eq_of_ae_eq
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
{m : MeasurableSpace X}
[TopologicalSpace Y]
[T2Space Y]
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{f : X → Y}
{g : X → Y}
(h : f =ᶠ[MeasureTheory.Measure.ae μ] g)
(hf : Continuous f)
(hg : Continuous g)
:
f = g
If two continuous functions are a.e. equal, then they are equal.
theorem
MeasureTheory.Measure.eqOn_of_ae_eq
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
{m : MeasurableSpace X}
[TopologicalSpace Y]
[T2Space Y]
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{s : Set X}
{f : X → Y}
{g : X → Y}
(h : f =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.restrict μ s)] g)
(hf : ContinuousOn f s)
(hg : ContinuousOn g s)
(hU : s ⊆ closure (interior s))
:
Set.EqOn f g s
theorem
Continuous.ae_eq_iff_eq
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
{m : MeasurableSpace X}
[TopologicalSpace Y]
[T2Space Y]
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{f : X → Y}
{g : X → Y}
(hf : Continuous f)
(hg : Continuous g)
:
f =ᶠ[MeasureTheory.Measure.ae μ] g ↔ f = g
theorem
Continuous.isOpenPosMeasure_map
{X : Type u_1}
[TopologicalSpace X]
{m : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[OpensMeasurableSpace X]
{Z : Type u_3}
[TopologicalSpace Z]
[MeasurableSpace Z]
[BorelSpace Z]
{f : X → Z}
(hf : Continuous f)
(hf_surj : Function.Surjective f)
:
theorem
MeasureTheory.Measure.measure_Ioi_pos
{X : Type u_1}
[TopologicalSpace X]
[LinearOrder X]
[OrderTopology X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[NoMaxOrder X]
(a : X)
:
theorem
MeasureTheory.Measure.measure_Iio_pos
{X : Type u_1}
[TopologicalSpace X]
[LinearOrder X]
[OrderTopology X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[NoMinOrder X]
(a : X)
:
theorem
MeasureTheory.Measure.measure_Ioo_pos
{X : Type u_1}
[TopologicalSpace X]
[LinearOrder X]
[OrderTopology X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[DenselyOrdered X]
{a : X}
{b : X}
:
theorem
MeasureTheory.Measure.measure_Ioo_eq_zero
{X : Type u_1}
[TopologicalSpace X]
[LinearOrder X]
[OrderTopology X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[DenselyOrdered X]
{a : X}
{b : X}
:
theorem
MeasureTheory.Measure.eqOn_Ioo_of_ae_eq
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[LinearOrder X]
[OrderTopology X]
{m : MeasurableSpace X}
[TopologicalSpace Y]
[T2Space Y]
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{a : X}
{b : X}
{f : X → Y}
{g : X → Y}
(hfg : f =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.restrict μ (Set.Ioo a b))] g)
(hf : ContinuousOn f (Set.Ioo a b))
(hg : ContinuousOn g (Set.Ioo a b))
:
theorem
MeasureTheory.Measure.eqOn_Ioc_of_ae_eq
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[LinearOrder X]
[OrderTopology X]
{m : MeasurableSpace X}
[TopologicalSpace Y]
[T2Space Y]
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[DenselyOrdered X]
{a : X}
{b : X}
{f : X → Y}
{g : X → Y}
(hfg : f =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.restrict μ (Set.Ioc a b))] g)
(hf : ContinuousOn f (Set.Ioc a b))
(hg : ContinuousOn g (Set.Ioc a b))
:
theorem
MeasureTheory.Measure.eqOn_Ico_of_ae_eq
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[LinearOrder X]
[OrderTopology X]
{m : MeasurableSpace X}
[TopologicalSpace Y]
[T2Space Y]
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[DenselyOrdered X]
{a : X}
{b : X}
{f : X → Y}
{g : X → Y}
(hfg : f =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.restrict μ (Set.Ico a b))] g)
(hf : ContinuousOn f (Set.Ico a b))
(hg : ContinuousOn g (Set.Ico a b))
:
theorem
MeasureTheory.Measure.eqOn_Icc_of_ae_eq
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[LinearOrder X]
[OrderTopology X]
{m : MeasurableSpace X}
[TopologicalSpace Y]
[T2Space Y]
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[DenselyOrdered X]
{a : X}
{b : X}
(hne : a ≠ b)
{f : X → Y}
{g : X → Y}
(hfg : f =ᶠ[MeasureTheory.Measure.ae (MeasureTheory.Measure.restrict μ (Set.Icc a b))] g)
(hf : ContinuousOn f (Set.Icc a b))
(hg : ContinuousOn g (Set.Icc a b))
:
theorem
Metric.measure_ball_pos
{X : Type u_1}
[PseudoMetricSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
(x : X)
{r : ℝ}
(hr : 0 < r)
:
0 < ↑↑μ (Metric.ball x r)
theorem
Metric.measure_closedBall_pos
{X : Type u_1}
[PseudoMetricSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
(x : X)
{r : ℝ}
(hr : 0 < r)
:
0 < ↑↑μ (Metric.closedBall x r)
See also Metric.measure_closedBall_pos_iff
.
@[simp]
theorem
Metric.measure_closedBall_pos_iff
{X : Type u_2}
[MetricSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[MeasureTheory.NoAtoms μ]
{x : X}
{r : ℝ}
:
0 < ↑↑μ (Metric.closedBall x r) ↔ 0 < r
theorem
EMetric.measure_ball_pos
{X : Type u_1}
[PseudoEMetricSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
(x : X)
{r : ENNReal}
(hr : r ≠ 0)
:
0 < ↑↑μ (EMetric.ball x r)
theorem
EMetric.measure_closedBall_pos
{X : Type u_1}
[PseudoEMetricSpace X]
{m : MeasurableSpace X}
(μ : MeasureTheory.Measure X)
[MeasureTheory.Measure.IsOpenPosMeasure μ]
(x : X)
{r : ENNReal}
(hr : r ≠ 0)
:
0 < ↑↑μ (EMetric.closedBall x r)