Conformal Maps #
A continuous linear map between real normed spaces X
and Y
is ConformalAt
some point x
if it is real differentiable at that point and its differential is a conformal linear map.
Main definitions #
ConformalAt
: the main definition of conformal mapsConformal
: maps that are conformal at every point
Main results #
- The conformality of the composition of two conformal maps, the identity map and multiplications by nonzero constants
conformalAt_iff_isConformalMap_fderiv
: an equivalent definition of the conformality of a map
In Analysis.Calculus.Conformal.InnerProduct
:
conformalAt_iff
: an equivalent definition of the conformality of a map
In Geometry.Euclidean.Angle.Unoriented.Conformal
:
ConformalAt.preserves_angle
: if a map is conformal atx
, then its differential preserves all angles atx
Tags #
conformal
Warning #
The definition of conformality in this file does NOT require the maps to be orientation-preserving. Maps such as the complex conjugate are considered to be conformal.
def
ConformalAt
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
(f : X → Y)
(x : X)
:
A map f
is said to be conformal if it has a conformal differential f'
.
Equations
- ConformalAt f x = ∃ f', HasFDerivAt f f' x ∧ IsConformalMap f'
Instances For
theorem
conformalAt_id
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
(x : X)
:
ConformalAt id x
theorem
conformalAt_const_smul
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{c : ℝ}
(h : c ≠ 0)
(x : X)
:
ConformalAt (fun x' => c • x') x
theorem
Subsingleton.conformalAt
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
[Subsingleton X]
(f : X → Y)
(x : X)
:
ConformalAt f x
theorem
conformalAt_iff_isConformalMap_fderiv
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
{f : X → Y}
{x : X}
:
ConformalAt f x ↔ IsConformalMap (fderiv ℝ f x)
A function is a conformal map if and only if its differential is a conformal linear map
theorem
ConformalAt.differentiableAt
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
{f : X → Y}
{x : X}
(h : ConformalAt f x)
:
DifferentiableAt ℝ f x
theorem
ConformalAt.congr
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
{f : X → Y}
{g : X → Y}
{x : X}
{u : Set X}
(hx : x ∈ u)
(hu : IsOpen u)
(hf : ConformalAt f x)
(h : ∀ (x : X), x ∈ u → g x = f x)
:
ConformalAt g x
theorem
ConformalAt.comp
{X : Type u_1}
{Y : Type u_2}
{Z : Type u_3}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedAddCommGroup Z]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
[NormedSpace ℝ Z]
{f : X → Y}
{g : Y → Z}
(x : X)
(hg : ConformalAt g (f x))
(hf : ConformalAt f x)
:
ConformalAt (g ∘ f) x
theorem
ConformalAt.const_smul
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
{f : X → Y}
{x : X}
{c : ℝ}
(hc : c ≠ 0)
(hf : ConformalAt f x)
:
ConformalAt (c • f) x
def
Conformal
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
(f : X → Y)
:
A map f
is conformal if it's conformal at every point.
Equations
- Conformal f = ∀ (x : X), ConformalAt f x
Instances For
theorem
conformal_const_smul
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{c : ℝ}
(h : c ≠ 0)
:
theorem
Conformal.conformalAt
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
{f : X → Y}
(h : Conformal f)
(x : X)
:
ConformalAt f x
theorem
Conformal.differentiable
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
{f : X → Y}
(h : Conformal f)
:
theorem
Conformal.comp
{X : Type u_1}
{Y : Type u_2}
{Z : Type u_3}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedAddCommGroup Z]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
[NormedSpace ℝ Z]
{f : X → Y}
{g : Y → Z}
(hf : Conformal f)
(hg : Conformal g)
:
theorem
Conformal.const_smul
{X : Type u_1}
{Y : Type u_2}
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ℝ X]
[NormedSpace ℝ Y]
{f : X → Y}
(hf : Conformal f)
{c : ℝ}
(hc : c ≠ 0)
: