The derivative of the scalar restriction of a linear map #
For detailed documentation of the FrΓ©chet derivative,
see the module docstring of Analysis/Calculus/FDeriv/Basic.lean
.
This file contains the usual formulas (and existence assertions) for the derivative of the scalar restriction of a linear map.
Restricting from β
to β
, or generally from π'
to π
#
If a function is differentiable over β
, then it is differentiable over β
. In this paragraph,
we give variants of this statement, in the general situation where β
and β
are replaced
respectively by π'
and π
where π'
is a normed algebra over π
.
theorem
HasStrictFDerivAt.restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{f' : E βL[π'] F}
{x : E}
(h : HasStrictFDerivAt f f' x)
:
HasStrictFDerivAt f (ContinuousLinearMap.restrictScalars π f') x
theorem
HasFDerivAtFilter.restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{f' : E βL[π'] F}
{x : E}
{L : Filter E}
(h : HasFDerivAtFilter f f' x L)
:
HasFDerivAtFilter f (ContinuousLinearMap.restrictScalars π f') x L
theorem
HasFDerivAt.restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{f' : E βL[π'] F}
{x : E}
(h : HasFDerivAt f f' x)
:
HasFDerivAt f (ContinuousLinearMap.restrictScalars π f') x
theorem
HasFDerivWithinAt.restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{f' : E βL[π'] F}
{s : Set E}
{x : E}
(h : HasFDerivWithinAt f f' s x)
:
HasFDerivWithinAt f (ContinuousLinearMap.restrictScalars π f') s x
theorem
DifferentiableAt.restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{x : E}
(h : DifferentiableAt π' f x)
:
DifferentiableAt π f x
theorem
DifferentiableWithinAt.restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{s : Set E}
{x : E}
(h : DifferentiableWithinAt π' f s x)
:
DifferentiableWithinAt π f s x
theorem
DifferentiableOn.restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{s : Set E}
(h : DifferentiableOn π' f s)
:
DifferentiableOn π f s
theorem
Differentiable.restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
(h : Differentiable π' f)
:
Differentiable π f
theorem
hasFDerivWithinAt_of_restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{f' : E βL[π'] F}
{s : Set E}
{x : E}
{g' : E βL[π] F}
(h : HasFDerivWithinAt f g' s x)
(H : ContinuousLinearMap.restrictScalars π f' = g')
:
HasFDerivWithinAt f f' s x
theorem
hasFDerivAt_of_restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{f' : E βL[π'] F}
{x : E}
{g' : E βL[π] F}
(h : HasFDerivAt f g' x)
(H : ContinuousLinearMap.restrictScalars π f' = g')
:
HasFDerivAt f f' x
theorem
DifferentiableAt.fderiv_restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{x : E}
(h : DifferentiableAt π' f x)
:
fderiv π f x = ContinuousLinearMap.restrictScalars π (fderiv π' f x)
theorem
differentiableWithinAt_iff_restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{s : Set E}
{x : E}
(hf : DifferentiableWithinAt π f s x)
(hs : UniqueDiffWithinAt π s x)
:
DifferentiableWithinAt π' f s x β β g', ContinuousLinearMap.restrictScalars π g' = fderivWithin π f s x
theorem
differentiableAt_iff_restrictScalars
(π : Type u_1)
[NontriviallyNormedField π]
{π' : Type u_2}
[NontriviallyNormedField π']
[NormedAlgebra π π']
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedSpace π' E]
[IsScalarTower π π' E]
{F : Type u_4}
[NormedAddCommGroup F]
[NormedSpace π F]
[NormedSpace π' F]
[IsScalarTower π π' F]
{f : E β F}
{x : E}
(hf : DifferentiableAt π f x)
:
DifferentiableAt π' f x β β g', ContinuousLinearMap.restrictScalars π g' = fderiv π f x