Documentation

Mathlib.Analysis.Calculus.FDeriv.Equiv

The derivative of a linear equivalence #

For detailed documentation of the FrΓ©chet derivative, see the module docstring of Analysis/Calculus/FDeriv/Basic.lean.

This file contains the usual formulas (and existence assertions) for the derivative of continuous linear equivalences.

Differentiability of linear equivs, and invariance of differentiability #

theorem ContinuousLinearEquiv.hasStrictFDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} (iso : E ≃L[π•œ] F) :
HasStrictFDerivAt (↑iso) (↑iso) x
theorem ContinuousLinearEquiv.hasFDerivWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} {s : Set E} (iso : E ≃L[π•œ] F) :
HasFDerivWithinAt (↑iso) (↑iso) s x
theorem ContinuousLinearEquiv.hasFDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} (iso : E ≃L[π•œ] F) :
HasFDerivAt (↑iso) (↑iso) x
theorem ContinuousLinearEquiv.differentiableAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} (iso : E ≃L[π•œ] F) :
DifferentiableAt π•œ (↑iso) x
theorem ContinuousLinearEquiv.differentiableWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} {s : Set E} (iso : E ≃L[π•œ] F) :
DifferentiableWithinAt π•œ (↑iso) s x
theorem ContinuousLinearEquiv.fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} (iso : E ≃L[π•œ] F) :
fderiv π•œ (↑iso) x = ↑iso
theorem ContinuousLinearEquiv.fderivWithin {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} {s : Set E} (iso : E ≃L[π•œ] F) (hxs : UniqueDiffWithinAt π•œ s x) :
fderivWithin π•œ (↑iso) s x = ↑iso
theorem ContinuousLinearEquiv.differentiable {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (iso : E ≃L[π•œ] F) :
Differentiable π•œ ↑iso
theorem ContinuousLinearEquiv.differentiableOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {s : Set E} (iso : E ≃L[π•œ] F) :
DifferentiableOn π•œ (↑iso) s
theorem ContinuousLinearEquiv.comp_differentiableWithinAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {s : Set G} {x : G} :
DifferentiableWithinAt π•œ (↑iso ∘ f) s x ↔ DifferentiableWithinAt π•œ f s x
theorem ContinuousLinearEquiv.comp_differentiableAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {x : G} :
DifferentiableAt π•œ (↑iso ∘ f) x ↔ DifferentiableAt π•œ f x
theorem ContinuousLinearEquiv.comp_differentiableOn_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {s : Set G} :
DifferentiableOn π•œ (↑iso ∘ f) s ↔ DifferentiableOn π•œ f s
theorem ContinuousLinearEquiv.comp_differentiable_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} :
Differentiable π•œ (↑iso ∘ f) ↔ Differentiable π•œ f
theorem ContinuousLinearEquiv.comp_hasFDerivWithinAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] E} :
HasFDerivWithinAt (↑iso ∘ f) (ContinuousLinearMap.comp (↑iso) f') s x ↔ HasFDerivWithinAt f f' s x
theorem ContinuousLinearEquiv.comp_hasStrictFDerivAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} :
theorem ContinuousLinearEquiv.comp_hasFDerivAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} :
HasFDerivAt (↑iso ∘ f) (ContinuousLinearMap.comp (↑iso) f') x ↔ HasFDerivAt f f' x
theorem ContinuousLinearEquiv.comp_hasFDerivWithinAt_iff' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] F} :
theorem ContinuousLinearEquiv.comp_hasFDerivAt_iff' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] F} :
theorem ContinuousLinearEquiv.comp_fderivWithin {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {s : Set G} {x : G} (hxs : UniqueDiffWithinAt π•œ s x) :
fderivWithin π•œ (↑iso ∘ f) s x = ContinuousLinearMap.comp (↑iso) (fderivWithin π•œ f s x)
theorem ContinuousLinearEquiv.comp_fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : G β†’ E} {x : G} :
fderiv π•œ (↑iso ∘ f) x = ContinuousLinearMap.comp (↑iso) (fderiv π•œ f x)
theorem ContinuousLinearEquiv.comp_right_differentiableWithinAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} {s : Set F} {x : E} :
DifferentiableWithinAt π•œ (f ∘ ↑iso) (↑iso ⁻¹' s) x ↔ DifferentiableWithinAt π•œ f s (↑iso x)
theorem ContinuousLinearEquiv.comp_right_differentiableAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} {x : E} :
DifferentiableAt π•œ (f ∘ ↑iso) x ↔ DifferentiableAt π•œ f (↑iso x)
theorem ContinuousLinearEquiv.comp_right_differentiableOn_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} {s : Set F} :
DifferentiableOn π•œ (f ∘ ↑iso) (↑iso ⁻¹' s) ↔ DifferentiableOn π•œ f s
theorem ContinuousLinearEquiv.comp_right_differentiable_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} :
Differentiable π•œ (f ∘ ↑iso) ↔ Differentiable π•œ f
theorem ContinuousLinearEquiv.comp_right_hasFDerivWithinAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} {s : Set F} {x : E} {f' : F β†’L[π•œ] G} :
HasFDerivWithinAt (f ∘ ↑iso) (ContinuousLinearMap.comp f' ↑iso) (↑iso ⁻¹' s) x ↔ HasFDerivWithinAt f f' s (↑iso x)
theorem ContinuousLinearEquiv.comp_right_hasFDerivAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} {x : E} {f' : F β†’L[π•œ] G} :
HasFDerivAt (f ∘ ↑iso) (ContinuousLinearMap.comp f' ↑iso) x ↔ HasFDerivAt f f' (↑iso x)
theorem ContinuousLinearEquiv.comp_right_hasFDerivWithinAt_iff' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} {s : Set F} {x : E} {f' : E β†’L[π•œ] G} :
HasFDerivWithinAt (f ∘ ↑iso) f' (↑iso ⁻¹' s) x ↔ HasFDerivWithinAt f (ContinuousLinearMap.comp f' ↑(ContinuousLinearEquiv.symm iso)) s (↑iso x)
theorem ContinuousLinearEquiv.comp_right_hasFDerivAt_iff' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} {x : E} {f' : E β†’L[π•œ] G} :
HasFDerivAt (f ∘ ↑iso) f' x ↔ HasFDerivAt f (ContinuousLinearMap.comp f' ↑(ContinuousLinearEquiv.symm iso)) (↑iso x)
theorem ContinuousLinearEquiv.comp_right_fderivWithin {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} {s : Set F} {x : E} (hxs : UniqueDiffWithinAt π•œ (↑iso ⁻¹' s) x) :
fderivWithin π•œ (f ∘ ↑iso) (↑iso ⁻¹' s) x = ContinuousLinearMap.comp (fderivWithin π•œ f s (↑iso x)) ↑iso
theorem ContinuousLinearEquiv.comp_right_fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃L[π•œ] F) {f : F β†’ G} {x : E} :
fderiv π•œ (f ∘ ↑iso) x = ContinuousLinearMap.comp (fderiv π•œ f (↑iso x)) ↑iso

Differentiability of linear isometry equivs, and invariance of differentiability #

theorem LinearIsometryEquiv.hasStrictFDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} (iso : E ≃ₗᡒ[π•œ] F) :
HasStrictFDerivAt (↑iso) (↑(ContinuousLinearEquiv.mk iso.toLinearEquiv)) x
theorem LinearIsometryEquiv.hasFDerivWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} {s : Set E} (iso : E ≃ₗᡒ[π•œ] F) :
HasFDerivWithinAt (↑iso) (↑(ContinuousLinearEquiv.mk iso.toLinearEquiv)) s x
theorem LinearIsometryEquiv.hasFDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} (iso : E ≃ₗᡒ[π•œ] F) :
HasFDerivAt (↑iso) (↑(ContinuousLinearEquiv.mk iso.toLinearEquiv)) x
theorem LinearIsometryEquiv.differentiableAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} (iso : E ≃ₗᡒ[π•œ] F) :
DifferentiableAt π•œ (↑iso) x
theorem LinearIsometryEquiv.differentiableWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} {s : Set E} (iso : E ≃ₗᡒ[π•œ] F) :
DifferentiableWithinAt π•œ (↑iso) s x
theorem LinearIsometryEquiv.fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} (iso : E ≃ₗᡒ[π•œ] F) :
fderiv π•œ (↑iso) x = ↑(ContinuousLinearEquiv.mk iso.toLinearEquiv)
theorem LinearIsometryEquiv.fderivWithin {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {x : E} {s : Set E} (iso : E ≃ₗᡒ[π•œ] F) (hxs : UniqueDiffWithinAt π•œ s x) :
fderivWithin π•œ (↑iso) s x = ↑(ContinuousLinearEquiv.mk iso.toLinearEquiv)
theorem LinearIsometryEquiv.differentiable {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (iso : E ≃ₗᡒ[π•œ] F) :
Differentiable π•œ ↑iso
theorem LinearIsometryEquiv.differentiableOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {s : Set E} (iso : E ≃ₗᡒ[π•œ] F) :
DifferentiableOn π•œ (↑iso) s
theorem LinearIsometryEquiv.comp_differentiableWithinAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {s : Set G} {x : G} :
DifferentiableWithinAt π•œ (↑iso ∘ f) s x ↔ DifferentiableWithinAt π•œ f s x
theorem LinearIsometryEquiv.comp_differentiableAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {x : G} :
DifferentiableAt π•œ (↑iso ∘ f) x ↔ DifferentiableAt π•œ f x
theorem LinearIsometryEquiv.comp_differentiableOn_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {s : Set G} :
DifferentiableOn π•œ (↑iso ∘ f) s ↔ DifferentiableOn π•œ f s
theorem LinearIsometryEquiv.comp_differentiable_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} :
Differentiable π•œ (↑iso ∘ f) ↔ Differentiable π•œ f
theorem LinearIsometryEquiv.comp_hasFDerivWithinAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] E} :
HasFDerivWithinAt (↑iso ∘ f) (ContinuousLinearMap.comp (↑(ContinuousLinearEquiv.mk iso.toLinearEquiv)) f') s x ↔ HasFDerivWithinAt f f' s x
theorem LinearIsometryEquiv.comp_hasStrictFDerivAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} :
theorem LinearIsometryEquiv.comp_hasFDerivAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} :
HasFDerivAt (↑iso ∘ f) (ContinuousLinearMap.comp (↑(ContinuousLinearEquiv.mk iso.toLinearEquiv)) f') x ↔ HasFDerivAt f f' x
theorem LinearIsometryEquiv.comp_hasFDerivWithinAt_iff' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] F} :
theorem LinearIsometryEquiv.comp_hasFDerivAt_iff' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] F} :
theorem LinearIsometryEquiv.comp_fderivWithin {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {s : Set G} {x : G} (hxs : UniqueDiffWithinAt π•œ s x) :
fderivWithin π•œ (↑iso ∘ f) s x = ContinuousLinearMap.comp (↑(ContinuousLinearEquiv.mk iso.toLinearEquiv)) (fderivWithin π•œ f s x)
theorem LinearIsometryEquiv.comp_fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (iso : E ≃ₗᡒ[π•œ] F) {f : G β†’ E} {x : G} :
fderiv π•œ (↑iso ∘ f) x = ContinuousLinearMap.comp (↑(ContinuousLinearEquiv.mk iso.toLinearEquiv)) (fderiv π•œ f x)
theorem HasStrictFDerivAt.of_local_left_inverse {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {f' : E ≃L[π•œ] F} {g : F β†’ E} {a : F} (hg : ContinuousAt g a) (hf : HasStrictFDerivAt f (↑f') (g a)) (hfg : βˆ€αΆ  (y : F) in nhds a, f (g y) = y) :

If f (g y) = y for y in some neighborhood of a, g is continuous at a, and f has an invertible derivative f' at g a in the strict sense, then g has the derivative f'⁻¹ at a in the strict sense.

This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function.

theorem HasFDerivAt.of_local_left_inverse {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {f' : E ≃L[π•œ] F} {g : F β†’ E} {a : F} (hg : ContinuousAt g a) (hf : HasFDerivAt f (↑f') (g a)) (hfg : βˆ€αΆ  (y : F) in nhds a, f (g y) = y) :

If f (g y) = y for y in some neighborhood of a, g is continuous at a, and f has an invertible derivative f' at g a, then g has the derivative f'⁻¹ at a.

This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function.

theorem LocalHomeomorph.hasStrictFDerivAt_symm {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : LocalHomeomorph E F) {f' : E ≃L[π•œ] F} {a : F} (ha : a ∈ f.target) (htff' : HasStrictFDerivAt (↑f) (↑f') (↑(LocalHomeomorph.symm f) a)) :

If f is a local homeomorphism defined on a neighbourhood of f.symm a, and f has an invertible derivative f' in the sense of strict differentiability at f.symm a, then f.symm has the derivative f'⁻¹ at a.

This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function.

theorem LocalHomeomorph.hasFDerivAt_symm {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : LocalHomeomorph E F) {f' : E ≃L[π•œ] F} {a : F} (ha : a ∈ f.target) (htff' : HasFDerivAt (↑f) (↑f') (↑(LocalHomeomorph.symm f) a)) :

If f is a local homeomorphism defined on a neighbourhood of f.symm a, and f has an invertible derivative f' at f.symm a, then f.symm has the derivative f'⁻¹ at a.

This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function.

theorem HasFDerivWithinAt.eventually_ne {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {s : Set E} (h : HasFDerivWithinAt f f' s x) (hf' : βˆƒ C, βˆ€ (z : E), β€–zβ€– ≀ C * ‖↑f' zβ€–) :
βˆ€αΆ  (z : E) in nhdsWithin x (s \ {x}), f z β‰  f x
theorem HasFDerivAt.eventually_ne {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} (h : HasFDerivAt f f' x) (hf' : βˆƒ C, βˆ€ (z : E), β€–zβ€– ≀ C * ‖↑f' zβ€–) :
βˆ€αΆ  (z : E) in nhdsWithin x {x}ᢜ, f z β‰  f x
theorem has_fderiv_at_filter_real_equiv {E : Type u_1} [NormedAddCommGroup E] [NormedSpace ℝ E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} {f' : E β†’L[ℝ] F} {x : E} {L : Filter E} :
Filter.Tendsto (fun x' => β€–x' - x‖⁻¹ * β€–f x' - f x - ↑f' (x' - x)β€–) L (nhds 0) ↔ Filter.Tendsto (fun x' => β€–x' - x‖⁻¹ β€’ (f x' - f x - ↑f' (x' - x))) L (nhds 0)
theorem HasFDerivAt.lim_real {E : Type u_1} [NormedAddCommGroup E] [NormedSpace ℝ E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} {f' : E β†’L[ℝ] F} {x : E} (hf : HasFDerivAt f f' x) (v : E) :
Filter.Tendsto (fun c => c β€’ (f (x + c⁻¹ β€’ v) - f x)) Filter.atTop (nhds (↑f' v))
theorem HasFDerivWithinAt.mapsTo_tangent_cone {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {s : Set E} {f' : E β†’L[π•œ] F} {x : E} (h : HasFDerivWithinAt f f' s x) :
Set.MapsTo (↑f') (tangentConeAt π•œ s x) (tangentConeAt π•œ (f '' s) (f x))

The image of a tangent cone under the differential of a map is included in the tangent cone to the image.

theorem HasFDerivWithinAt.uniqueDiffWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {s : Set E} {f' : E β†’L[π•œ] F} {x : E} (h : HasFDerivWithinAt f f' s x) (hs : UniqueDiffWithinAt π•œ s x) (h' : DenseRange ↑f') :
UniqueDiffWithinAt π•œ (f '' s) (f x)

If a set has the unique differentiability property at a point x, then the image of this set under a map with onto derivative has also the unique differentiability property at the image point.

theorem UniqueDiffOn.image {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {s : Set E} {f' : E β†’ E β†’L[π•œ] F} (hs : UniqueDiffOn π•œ s) (hf' : βˆ€ (x : E), x ∈ s β†’ HasFDerivWithinAt f (f' x) s x) (hd : βˆ€ (x : E), x ∈ s β†’ DenseRange ↑(f' x)) :
UniqueDiffOn π•œ (f '' s)
theorem HasFDerivWithinAt.uniqueDiffWithinAt_of_continuousLinearEquiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {s : Set E} {x : E} (e' : E ≃L[π•œ] F) (h : HasFDerivWithinAt f (↑e') s x) (hs : UniqueDiffWithinAt π•œ s x) :
UniqueDiffWithinAt π•œ (f '' s) (f x)
theorem ContinuousLinearEquiv.uniqueDiffOn_image {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {s : Set E} (e : E ≃L[π•œ] F) (h : UniqueDiffOn π•œ s) :
UniqueDiffOn π•œ (↑e '' s)
@[simp]
theorem ContinuousLinearEquiv.uniqueDiffOn_image_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {s : Set E} (e : E ≃L[π•œ] F) :
UniqueDiffOn π•œ (↑e '' s) ↔ UniqueDiffOn π•œ s
@[simp]
theorem ContinuousLinearEquiv.uniqueDiffOn_preimage_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {s : Set E} (e : F ≃L[π•œ] E) :
UniqueDiffOn π•œ (↑e ⁻¹' s) ↔ UniqueDiffOn π•œ s