Regular primes #
Main definitions #
is_regular_number
: a natural numbern
is regular ifn
is coprime with the cardinal of the class group.
Equations
instance
CyclotomicField.classGroupFinite
{p : ℕ+}
:
Fintype (ClassGroup { x // x ∈ NumberField.ringOfIntegers (CyclotomicField p ℚ) })
Equations
- CyclotomicField.classGroupFinite = ClassGroup.fintypeOfAdmissibleOfFinite ℚ (CyclotomicField p ℚ) AbsoluteValue.absIsAdmissible
A natural number n
is regular if n
is coprime with the cardinal of the class group
Equations
- IsRegularNumber n = Nat.Coprime n (Fintype.card (ClassGroup { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := n, property := (_ : 0 < n) } ℚ) }))
Instances For
The definition of regular primes.
Equations
Instances For
A prime number is Bernoulli regular if it does not divide the numerator of any of
the first p - 3
(non-zero) Bernoulli numbers
Equations
- IsBernoulliRegular p = ∀ (i : ℕ), i ∈ Finset.range ((p - 3) / 2) → ↑(bernoulli 2 * ↑i).num ≠ 0
Instances For
A prime is super regular if its regular and Bernoulli regular.
Equations
Instances For
def
cyclotomicFieldTwoEquiv
(K : Type u_1)
[Field K]
(L : Type u_2)
[Field L]
[Algebra K L]
[IsCyclotomicExtension {2} K L]
:
The second cyclotomic field is equivalent to the base field.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
IsPrincipalIdealRing_of_IsCyclotomicExtension_two
(L : Type u_1)
[Field L]
[CharZero L]
[IsCyclotomicExtension {2} ℚ L]
:
IsPrincipalIdealRing { x // x ∈ NumberField.ringOfIntegers L }
instance
instIsCyclotomicExtensionSingletonPNatSetInstSingletonSetOfNatRatCyclotomicFieldMkNatLtInstLTNatInstOfNatNatTwo_posToAddMonoidWithOneToAddCommMonoidWithOneToNonAssocSemiringSemiringToPartialOrderStrictOrderedSemiringZeroLEOneClassOrderedSemiringSuccZeroTo_covariantClass_leftToOrderedAddCommMonoidFieldCommRingToCommRingToEuclideanDomainInstFieldCyclotomicFieldAlgebraRatToDivisionRingInstCharZeroCyclotomicFieldToAddMonoidWithOneToAddGroupWithOneToRingToDivisionRingInstFieldCyclotomicFieldTo_charZeroNumberField :
IsCyclotomicExtension {2} ℚ (CyclotomicField { val := 2, property := (_ : 0 < 2) } ℚ)
Equations
- One or more equations did not get rendered due to their size.
instance
instIsPrincipalIdealRingSubtypeCyclotomicFieldMkNatLtInstLTNatOfNatInstOfNatNatTwo_posToAddMonoidWithOneToAddCommMonoidWithOneToNonAssocSemiringSemiringToPartialOrderStrictOrderedSemiringZeroLEOneClassOrderedSemiringSuccZeroTo_covariantClass_leftToOrderedAddCommMonoidRatFieldMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommRingToEuclideanDomainInstFieldCyclotomicFieldAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToRing :
IsPrincipalIdealRing { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := 2, property := (_ : 0 < 2) } ℚ) }
Equations
- One or more equations did not get rendered due to their size.