Documentation

Mathlib.Topology.UnitInterval

The unit interval, as a topological space #

Use open unitInterval to turn on the notation I := Set.Icc (0 : ℝ) (1 : ℝ).

We provide basic instances, as well as a custom tactic for discharging 0 ≤ ↑x, 0 ≤ 1 - ↑x, ↑x ≤ 1, and 1 - ↑x ≤ 1 when x : I.

The unit interval #

@[inline, reducible]

The unit interval [0,1] in ℝ.

Equations
Instances For

    The unit interval [0,1] in ℝ.

    Equations
    Instances For
      theorem unitInterval.mul_mem {x : } {y : } (hx : x unitInterval) (hy : y unitInterval) :
      theorem unitInterval.div_mem {x : } {y : } (hx : 0 x) (hy : 0 y) (hxy : x y) :
      Equations
      Equations
      Equations

      Unit interval central symmetry.

      Equations
      Instances For

        Unit interval central symmetry.

        Equations
        Instances For
          @[simp]
          theorem unitInterval.nonneg (x : unitInterval) :
          0 x
          theorem unitInterval.le_one (x : unitInterval) :
          x 1
          theorem unitInterval.add_pos {t : unitInterval} {x : } (hx : 0 < x) :
          0 < x + t
          theorem unitInterval.nonneg' {t : unitInterval} :
          0 t

          like unitInterval.nonneg, but with the inequality in I.

          theorem unitInterval.le_one' {t : unitInterval} :
          t 1

          like unitInterval.le_one, but with the inequality in I.

          theorem unitInterval.mul_pos_mem_iff {a : } {t : } (ha : 0 < a) :
          a * t unitInterval t Set.Icc 0 (1 / a)
          @[simp]
          theorem projIcc_eq_zero {x : } :
          Set.projIcc 0 1 (_ : 0 1) x = 0 x 0
          @[simp]
          theorem projIcc_eq_one {x : } :
          Set.projIcc 0 1 (_ : 0 1) x = 1 1 x

          A tactic that solves 0 ≤ ↑x, 0 ≤ 1 - ↑x, ↑x ≤ 1, and 1 - ↑x ≤ 1 for x : I.

          Equations
          Instances For
            theorem affineHomeomorph_image_I {𝕜 : Type u_1} [LinearOrderedField 𝕜] [TopologicalSpace 𝕜] [TopologicalRing 𝕜] (a : 𝕜) (b : 𝕜) (h : 0 < a) :
            ↑(affineHomeomorph a b (_ : a 0)) '' Set.Icc 0 1 = Set.Icc b (a + b)

            The image of [0,1] under the homeomorphism fun x ↦ a * x + b is [b, a+b].

            def iccHomeoI {𝕜 : Type u_1} [LinearOrderedField 𝕜] [TopologicalSpace 𝕜] [TopologicalRing 𝕜] (a : 𝕜) (b : 𝕜) (h : a < b) :
            ↑(Set.Icc a b) ≃ₜ ↑(Set.Icc 0 1)

            The affine homeomorphism from a nontrivial interval [a,b] to [0,1].

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem iccHomeoI_apply_coe {𝕜 : Type u_1} [LinearOrderedField 𝕜] [TopologicalSpace 𝕜] [TopologicalRing 𝕜] (a : 𝕜) (b : 𝕜) (h : a < b) (x : ↑(Set.Icc a b)) :
              ↑(↑(iccHomeoI a b h) x) = (x - a) / (b - a)
              @[simp]
              theorem iccHomeoI_symm_apply_coe {𝕜 : Type u_1} [LinearOrderedField 𝕜] [TopologicalSpace 𝕜] [TopologicalRing 𝕜] (a : 𝕜) (b : 𝕜) (h : a < b) (x : ↑(Set.Icc 0 1)) :
              ↑(↑(Homeomorph.symm (iccHomeoI a b h)) x) = (b - a) * x + a