The unit interval, as a topological space #
Use open unitInterval
to turn on the notation I := Set.Icc (0 : ℝ) (1 : ℝ)
.
We provide basic instances, as well as a custom tactic for discharging
0 ≤ ↑x
, 0 ≤ 1 - ↑x
, ↑x ≤ 1
, and 1 - ↑x ≤ 1
when x : I
.
The unit interval #
The unit interval [0,1]
in ℝ.
Equations
- unitInterval.termI = Lean.ParserDescr.node `unitInterval.termI 1024 (Lean.ParserDescr.symbol "I")
Instances For
theorem
unitInterval.mul_mem
{x : ℝ}
{y : ℝ}
(hx : x ∈ unitInterval)
(hy : y ∈ unitInterval)
:
x * y ∈ unitInterval
theorem
unitInterval.div_mem
{x : ℝ}
{y : ℝ}
(hx : 0 ≤ x)
(hy : 0 ≤ y)
(hxy : x ≤ y)
:
x / y ∈ unitInterval
Equations
- unitInterval.hasZero = { zero := { val := 0, property := unitInterval.zero_mem } }
Equations
- unitInterval.hasOne = { one := { val := 1, property := unitInterval.hasOne.proof_1 } }
Equations
- unitInterval.instMulElemRealUnitInterval = { mul := fun x y => { val := ↑x * ↑y, property := (_ : ↑x * ↑y ∈ unitInterval) } }
Unit interval central symmetry.
Equations
- unitInterval.symm t = { val := 1 - ↑t, property := (_ : 1 - ↑t ∈ unitInterval) }
Instances For
Unit interval central symmetry.
Equations
- unitInterval.termσ = Lean.ParserDescr.node `unitInterval.termσ 1024 (Lean.ParserDescr.symbol "σ")
Instances For
@[simp]
Equations
- One or more equations did not get rendered due to their size.
like unitInterval.nonneg
, but with the inequality in I
.
like unitInterval.le_one
, but with the inequality in I
.
A tactic that solves 0 ≤ ↑x
, 0 ≤ 1 - ↑x
, ↑x ≤ 1
, and 1 - ↑x ≤ 1
for x : I
.
Equations
- Tactic.Interactive.tacticUnit_interval = Lean.ParserDescr.node `Tactic.Interactive.tacticUnit_interval 1024 (Lean.ParserDescr.nonReservedSymbol "unit_interval" false)
Instances For
theorem
affineHomeomorph_image_I
{𝕜 : Type u_1}
[LinearOrderedField 𝕜]
[TopologicalSpace 𝕜]
[TopologicalRing 𝕜]
(a : 𝕜)
(b : 𝕜)
(h : 0 < a)
:
The image of [0,1]
under the homeomorphism fun x ↦ a * x + b
is [b, a+b]
.
def
iccHomeoI
{𝕜 : Type u_1}
[LinearOrderedField 𝕜]
[TopologicalSpace 𝕜]
[TopologicalRing 𝕜]
(a : 𝕜)
(b : 𝕜)
(h : a < b)
:
The affine homeomorphism from a nontrivial interval [a,b]
to [0,1]
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
iccHomeoI_apply_coe
{𝕜 : Type u_1}
[LinearOrderedField 𝕜]
[TopologicalSpace 𝕜]
[TopologicalRing 𝕜]
(a : 𝕜)
(b : 𝕜)
(h : a < b)
(x : ↑(Set.Icc a b))
:
@[simp]
theorem
iccHomeoI_symm_apply_coe
{𝕜 : Type u_1}
[LinearOrderedField 𝕜]
[TopologicalSpace 𝕜]
[TopologicalRing 𝕜]
(a : 𝕜)
(b : 𝕜)
(h : a < b)
(x : ↑(Set.Icc 0 1))
: