The star operation, bundled as a continuous star-linear equiv #
@[simp]
theorem
starL_symm_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
∀ (a : A), ↑(ContinuousLinearEquiv.symm (starL R)) a = ↑(AddEquiv.symm starAddEquiv) a
@[simp]
theorem
starL_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
def
starL
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
If A
is a topological module over a commutative R
with compatible actions,
then star
is a continuous semilinear equivalence.
Equations
Instances For
@[simp]
theorem
starL'_symm_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[TrivialStar R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
∀ (a : A),
↑(ContinuousLinearEquiv.symm (starL' R)) a = ↑↑(LinearEquiv.symm (starL R).toLinearEquiv)
(↑↑(LinearEquiv.symm
{
toLinearMap :=
{
toAddHom :=
{ toFun := id,
map_add' :=
(_ :
∀ (x y : A),
Equiv.toFun (AddEquiv.refl A).toEquiv (x + y) = Equiv.toFun (AddEquiv.refl A).toEquiv x + Equiv.toFun (AddEquiv.refl A).toEquiv y) },
map_smul' := (_ : ∀ (r : R) (a : A), r • a = star r • a) },
invFun := id,
left_inv := (_ : Function.LeftInverse (AddEquiv.refl A).toEquiv.invFun (AddEquiv.refl A).toEquiv.toFun),
right_inv :=
(_ : Function.RightInverse (AddEquiv.refl A).toEquiv.invFun (AddEquiv.refl A).toEquiv.toFun) })
a)
@[simp]
theorem
starL'_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[TrivialStar R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
def
starL'
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[TrivialStar R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
If A
is a topological module over a commutative R
with trivial star and compatible actions,
then star
is a continuous linear equivalence.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
continuous_selfAdjointPart
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousAdd A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
theorem
continuous_skewAdjointPart
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousSub A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
theorem
continuous_decomposeProdAdjoint
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
theorem
continuous_decomposeProdAdjoint_symm
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
:
@[simp]
theorem
selfAdjointPartL_apply_coe
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousAdd A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(x : A)
:
@[simp]
theorem
selfAdjointPartL_toFun_coe
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousAdd A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(x : A)
:
def
selfAdjointPartL
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousAdd A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
A →L[R] { x // x ∈ selfAdjoint A }
The self-adjoint part of an element of a star module, as a continuous linear map.
Equations
Instances For
@[simp]
theorem
skewAdjointPartL_apply_coe
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousSub A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(x : A)
:
@[simp]
theorem
skewAdjointPartL_toFun_coe
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousSub A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(x : A)
:
def
skewAdjointPartL
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousSub A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
A →L[R] { x // x ∈ skewAdjoint A }
The skew-adjoint part of an element of a star module, as a continuous linear map.
Equations
Instances For
@[simp]
theorem
StarModule.decomposeProdAdjointL_symm_apply
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(a : { x // x ∈ selfAdjoint A } × { x // x ∈ skewAdjoint A })
:
↑(ContinuousLinearEquiv.symm (StarModule.decomposeProdAdjointL R A)) a = ↑(Submodule.subtype (selfAdjoint.submodule R A)) a.fst + ↑(Submodule.subtype (skewAdjoint.submodule R A)) a.snd
@[simp]
theorem
StarModule.decomposeProdAdjointL_apply
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(i : A)
:
↑(StarModule.decomposeProdAdjointL R A) i = (↑(selfAdjointPart R) i, ↑(skewAdjointPart R) i)
def
StarModule.decomposeProdAdjointL
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
A ≃L[R] { x // x ∈ selfAdjoint A } × { x // x ∈ skewAdjoint A }
The decomposition of elements of a star module into their self- and skew-adjoint parts, as a continuous linear equivalence.