The star operation, bundled as a star-linear equiv #
We define starLinearEquiv
, which is the star operation bundled as a star-linear map.
It is defined on a star algebra A
over the base ring R
.
This file also provides some lemmas that need Algebra.Module.Basic
imported to prove.
TODO #
- Define
starLinearEquiv
for noncommutativeR
. We only the commutative case for now since, in the noncommutative case, the ring hom needs to reverse the order of multiplication. This requires a ring hom of typeR →+* Rᵐᵒᵖ
, which is very undesirable in the commutative case. One way out would be to define a new typeclassIsOp R S
and have an instanceIsOp R R
for commutativeR
. - Also note that such a definition involving
Rᵐᵒᵖ
oris_op R S
would require adding the appropriateRingHomInvPair
instances to be able to define the semilinear equivalence.
@[simp]
theorem
star_nat_cast_smul
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[StarAddMonoid M]
(n : ℕ)
(x : M)
:
@[simp]
theorem
star_int_cast_smul
{R : Type u_1}
{M : Type u_2}
[Ring R]
[AddCommGroup M]
[Module R M]
[StarAddMonoid M]
(n : ℤ)
(x : M)
:
@[simp]
theorem
star_inv_nat_cast_smul
{R : Type u_1}
{M : Type u_2}
[DivisionSemiring R]
[AddCommMonoid M]
[Module R M]
[StarAddMonoid M]
(n : ℕ)
(x : M)
:
@[simp]
theorem
star_inv_int_cast_smul
{R : Type u_1}
{M : Type u_2}
[DivisionRing R]
[AddCommGroup M]
[Module R M]
[StarAddMonoid M]
(n : ℤ)
(x : M)
:
@[simp]
theorem
star_rat_cast_smul
{R : Type u_1}
{M : Type u_2}
[DivisionRing R]
[AddCommGroup M]
[Module R M]
[StarAddMonoid M]
(n : ℚ)
(x : M)
:
@[simp]
theorem
star_rat_smul
{R : Type u_3}
[AddCommGroup R]
[StarAddMonoid R]
[Module ℚ R]
(x : R)
(n : ℚ)
:
@[simp]
theorem
starLinearEquiv_symm_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
:
∀ (a : A), ↑(LinearEquiv.symm (starLinearEquiv R)) a = Equiv.invFun starAddEquiv.toEquiv a
@[simp]
theorem
starLinearEquiv_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
:
∀ (a : A), ↑(starLinearEquiv R) a = star a
def
starLinearEquiv
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
:
If A
is a module over a commutative R
with compatible actions,
then star
is a semilinear equivalence.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
selfAdjoint.submodule
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
:
Submodule R A
The self-adjoint elements of a star module, as a submodule.
Equations
- selfAdjoint.submodule R A = let src := selfAdjoint A; { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (x : R) (x_1 : A), IsSelfAdjoint x_1 → IsSelfAdjoint (x • x_1)) }
Instances For
def
skewAdjoint.submodule
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
:
Submodule R A
The skew-adjoint elements of a star module, as a submodule.
Equations
- skewAdjoint.submodule R A = let src := skewAdjoint A; { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (r : R) {x : A}, x ∈ skewAdjoint A → r • x ∈ skewAdjoint A) }
Instances For
@[simp]
theorem
selfAdjointPart_apply_coe
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
(x : A)
:
def
selfAdjointPart
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
:
A →ₗ[R] { x // x ∈ selfAdjoint A }
The self-adjoint part of an element of a star module, as a linear map.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
skewAdjointPart_apply_coe
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
(x : A)
:
def
skewAdjointPart
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
:
A →ₗ[R] { x // x ∈ skewAdjoint A }
The skew-adjoint part of an element of a star module, as a linear map.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
StarModule.selfAdjointPart_add_skewAdjointPart
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
(x : A)
:
↑(↑(selfAdjointPart R) x) + ↑(↑(skewAdjointPart R) x) = x
theorem
IsSelfAdjoint.coe_selfAdjointPart_apply
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
{x : A}
(hx : IsSelfAdjoint x)
:
↑(↑(selfAdjointPart R) x) = x
theorem
IsSelfAdjoint.selfAdjointPart_apply
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
{x : A}
(hx : IsSelfAdjoint x)
:
↑(selfAdjointPart R) x = { val := x, property := hx }
theorem
selfAdjointPart_comp_subtype_selfAdjoint
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
:
LinearMap.comp (selfAdjointPart R) (Submodule.subtype (selfAdjoint.submodule R A)) = LinearMap.id
theorem
IsSelfAdjoint.skewAdjointPart_apply
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
{x : A}
(hx : IsSelfAdjoint x)
:
↑(skewAdjointPart R) x = 0
theorem
skewAdjointPart_comp_subtype_selfAdjoint
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
:
LinearMap.comp (skewAdjointPart R) (Submodule.subtype (selfAdjoint.submodule R A)) = 0
theorem
selfAdjointPart_comp_subtype_skewAdjoint
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
:
LinearMap.comp (selfAdjointPart R) (Submodule.subtype (skewAdjoint.submodule R A)) = 0
theorem
skewAdjointPart_comp_subtype_skewAdjoint
(R : Type u_1)
{A : Type u_2}
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
:
LinearMap.comp (skewAdjointPart R) (Submodule.subtype (skewAdjoint.submodule R A)) = LinearMap.id
@[simp]
theorem
StarModule.decomposeProdAdjoint_symm_apply
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
(a : { x // x ∈ selfAdjoint A } × { x // x ∈ skewAdjoint A })
:
↑(LinearEquiv.symm (StarModule.decomposeProdAdjoint R A)) a = ↑(Submodule.subtype (selfAdjoint.submodule R A)) a.fst + ↑(Submodule.subtype (skewAdjoint.submodule R A)) a.snd
@[simp]
theorem
StarModule.decomposeProdAdjoint_apply
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
(i : A)
:
↑(StarModule.decomposeProdAdjoint R A) i = (↑(selfAdjointPart R) i, ↑(skewAdjointPart R) i)
def
StarModule.decomposeProdAdjoint
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
:
A ≃ₗ[R] { x // x ∈ selfAdjoint A } × { x // x ∈ skewAdjoint A }
The decomposition of elements of a star module into their self- and skew-adjoint parts, as a linear equivalence.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
algebraMap_star_comm
{R : Type u_3}
{A : Type u_4}
[CommSemiring R]
[StarRing R]
[Semiring A]
[StarMul A]
[Algebra R A]
[StarModule R A]
(r : R)
:
↑(algebraMap R A) (star r) = star (↑(algebraMap R A) r)