Documentation

Mathlib.RingTheory.Localization.Module

Modules / vector spaces over localizations / fraction fields #

This file contains some results about vector spaces over the field of fractions of a ring.

Main results #

theorem LinearIndependent.localization {R : Type u_1} (Rₛ : Type u_2) [CommRing R] [CommRing Rₛ] [Algebra R Rₛ] (S : Submonoid R) [hT : IsLocalization S Rₛ] {M : Type u_3} [AddCommMonoid M] [Module R M] [Module Rₛ M] [IsScalarTower R Rₛ M] {ι : Type u_4} {b : ιM} (hli : LinearIndependent R b) :
theorem LinearIndependent.localization_localization {R : Type u_1} (Rₛ : Type u_2) [CommRing R] [CommRing Rₛ] [Algebra R Rₛ] (S : Submonoid R) [hT : IsLocalization S Rₛ] {A : Type u_3} [CommRing A] [Algebra R A] (Aₛ : Type u_4) [CommRing Aₛ] [Algebra A Aₛ] [Algebra Rₛ Aₛ] [Algebra R Aₛ] [IsScalarTower R Rₛ Aₛ] [IsScalarTower R A Aₛ] [hA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ] {ι : Type u_5} {v : ιA} (hv : LinearIndependent R v) :
LinearIndependent Rₛ (↑(algebraMap A Aₛ) v)
theorem SpanEqTop.localization_localization {R : Type u_1} (Rₛ : Type u_2) [CommRing R] [CommRing Rₛ] [Algebra R Rₛ] (S : Submonoid R) [hT : IsLocalization S Rₛ] {A : Type u_3} [CommRing A] [Algebra R A] (Aₛ : Type u_4) [CommRing Aₛ] [Algebra A Aₛ] [Algebra Rₛ Aₛ] [Algebra R Aₛ] [IsScalarTower R Rₛ Aₛ] [IsScalarTower R A Aₛ] [hA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ] {v : Set A} (hv : Submodule.span R v = ) :
Submodule.span Rₛ (↑(algebraMap A Aₛ) '' v) =
noncomputable def Basis.localizationLocalization {R : Type u_1} (Rₛ : Type u_2) [CommRing R] [CommRing Rₛ] [Algebra R Rₛ] (S : Submonoid R) [hT : IsLocalization S Rₛ] {A : Type u_3} [CommRing A] [Algebra R A] (Aₛ : Type u_4) [CommRing Aₛ] [Algebra A Aₛ] [Algebra Rₛ Aₛ] [Algebra R Aₛ] [IsScalarTower R Rₛ Aₛ] [IsScalarTower R A Aₛ] [hA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ] {ι : Type u_5} (b : Basis ι R A) :
Basis ι Rₛ Aₛ

If A has an R-basis, then localizing A at S has a basis over R localized at S.

A suitable instance for [Algebra A Aₛ] is localizationAlgebra.

Equations
Instances For
    @[simp]
    theorem Basis.localizationLocalization_apply {R : Type u_1} (Rₛ : Type u_2) [CommRing R] [CommRing Rₛ] [Algebra R Rₛ] (S : Submonoid R) [hT : IsLocalization S Rₛ] {A : Type u_3} [CommRing A] [Algebra R A] (Aₛ : Type u_4) [CommRing Aₛ] [Algebra A Aₛ] [Algebra Rₛ Aₛ] [Algebra R Aₛ] [IsScalarTower R Rₛ Aₛ] [IsScalarTower R A Aₛ] [hA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ] {ι : Type u_5} (b : Basis ι R A) (i : ι) :
    ↑(Basis.localizationLocalization Rₛ S Aₛ b) i = ↑(algebraMap A Aₛ) (b i)
    @[simp]
    theorem Basis.localizationLocalization_repr_algebraMap {R : Type u_1} (Rₛ : Type u_2) [CommRing R] [CommRing Rₛ] [Algebra R Rₛ] (S : Submonoid R) [hT : IsLocalization S Rₛ] {A : Type u_3} [CommRing A] [Algebra R A] (Aₛ : Type u_4) [CommRing Aₛ] [Algebra A Aₛ] [Algebra Rₛ Aₛ] [Algebra R Aₛ] [IsScalarTower R Rₛ Aₛ] [IsScalarTower R A Aₛ] [hA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ] {ι : Type u_5} (b : Basis ι R A) (x : A) (i : ι) :
    ↑((Basis.localizationLocalization Rₛ S Aₛ b).repr (↑(algebraMap A Aₛ) x)) i = ↑(algebraMap R Rₛ) (↑(b.repr x) i)
    theorem Basis.localizationLocalization_span {R : Type u_1} (Rₛ : Type u_2) [CommRing R] [CommRing Rₛ] [Algebra R Rₛ] (S : Submonoid R) [hT : IsLocalization S Rₛ] {A : Type u_3} [CommRing A] [Algebra R A] (Aₛ : Type u_4) [CommRing Aₛ] [Algebra A Aₛ] [Algebra Rₛ Aₛ] [Algebra R Aₛ] [IsScalarTower R Rₛ Aₛ] [IsScalarTower R A Aₛ] [hA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ] {ι : Type u_5} (b : Basis ι R A) :
    theorem LinearIndependent.iff_fractionRing (R : Type u_1) (K : Type u_2) [CommRing R] [Field K] [Algebra R K] [IsFractionRing R K] {V : Type u_3} [AddCommGroup V] [Module R V] [Module K V] [IsScalarTower R K V] {ι : Type u_4} {b : ιV} :
    def LinearMap.extendScalarsOfIsLocalization {R : Type u_1} [CommRing R] (S : Submonoid R) (A : Type u_2) [CommRing A] [Algebra R A] [IsLocalization S A] {M : Type u_3} {N : Type u_4} [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [Module A N] [IsScalarTower R A N] (f : M →ₗ[R] N) :

    An R-linear map between two S⁻¹R-modules is actually S⁻¹R-linear.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem LinearMap.restrictScalars_extendScalarsOfIsLocalization {R : Type u_1} [CommRing R] (S : Submonoid R) (A : Type u_2) [CommRing A] [Algebra R A] [IsLocalization S A] {M : Type u_3} {N : Type u_4} [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [Module A N] [IsScalarTower R A N] (f : M →ₗ[R] N) :
      @[simp]
      theorem LinearMap.extendScalarsOfIsLocalization_apply {R : Type u_1} [CommRing R] (S : Submonoid R) (A : Type u_2) [CommRing A] [Algebra R A] [IsLocalization S A] {M : Type u_3} {N : Type u_4} [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [Module A N] [IsScalarTower R A N] (f : M →ₗ[A] N) :