Documentation

Mathlib.Order.WithBot

WithBot, WithTop #

Adding a bot or a top to an order.

Main declarations #

def WithBot (α : Type u_5) :
Type u_5

Attach to a type.

Equations
Instances For
    instance WithBot.instReprWithBot {α : Type u_1} [Repr α] :
    Equations
    @[match_pattern]
    def WithBot.some {α : Type u_1} :
    αWithBot α

    The canonical map from α into WithBot α

    Equations
    • WithBot.some = some
    Instances For
      instance WithBot.coe {α : Type u_1} :
      Coe α (WithBot α)
      Equations
      • WithBot.coe = { coe := WithBot.some }
      instance WithBot.bot {α : Type u_1} :
      Equations
      • WithBot.bot = { bot := none }
      instance WithBot.inhabited {α : Type u_1} :
      Equations
      • WithBot.inhabited = { default := }
      instance WithBot.nontrivial {α : Type u_1} [Nonempty α] :
      Equations
      theorem WithBot.coe_injective {α : Type u_1} :
      Function.Injective WithBot.some
      @[simp]
      theorem WithBot.coe_inj {α : Type u_1} {a : α} {b : α} :
      a = b a = b
      theorem WithBot.forall {α : Type u_1} {p : WithBot αProp} :
      ((x : WithBot α) → p x) p ((x : α) → p x)
      theorem WithBot.exists {α : Type u_1} {p : WithBot αProp} :
      (x, p x) p x, p x
      theorem WithBot.none_eq_bot {α : Type u_1} :
      none =
      theorem WithBot.some_eq_coe {α : Type u_1} (a : α) :
      some a = a
      @[simp]
      theorem WithBot.bot_ne_coe {α : Type u_1} {a : α} :
      a
      @[simp]
      theorem WithBot.coe_ne_bot {α : Type u_1} {a : α} :
      a
      def WithBot.recBotCoe {α : Type u_1} {C : WithBot αSort u_5} (bot : C ) (coe : (a : α) → C a) (n : WithBot α) :
      C n

      Recursor for WithBot using the preferred forms and ↑a.

      Equations
      Instances For
        @[simp]
        theorem WithBot.recBotCoe_bot {α : Type u_1} {C : WithBot αSort u_5} (d : C ) (f : (a : α) → C a) :
        @[simp]
        theorem WithBot.recBotCoe_coe {α : Type u_1} {C : WithBot αSort u_5} (d : C ) (f : (a : α) → C a) (x : α) :
        WithBot.recBotCoe d f x = f x
        def WithBot.unbot' {α : Type u_1} (d : α) (x : WithBot α) :
        α

        Specialization of Option.getD to values in WithBot α that respects API boundaries.

        Equations
        Instances For
          @[simp]
          theorem WithBot.unbot'_bot {α : Type u_5} (d : α) :
          @[simp]
          theorem WithBot.unbot'_coe {α : Type u_5} (d : α) (x : α) :
          WithBot.unbot' d x = x
          theorem WithBot.coe_eq_coe {α : Type u_1} {a : α} {b : α} :
          a = b a = b
          theorem WithBot.unbot'_eq_iff {α : Type u_1} {d : α} {y : α} {x : WithBot α} :
          WithBot.unbot' d x = y x = y x = y = d
          @[simp]
          theorem WithBot.unbot'_eq_self_iff {α : Type u_1} {d : α} {x : WithBot α} :
          WithBot.unbot' d x = d x = d x =
          theorem WithBot.unbot'_eq_unbot'_iff {α : Type u_1} {d : α} {x : WithBot α} {y : WithBot α} :
          WithBot.unbot' d x = WithBot.unbot' d y x = y x = d y = x = y = d
          def WithBot.map {α : Type u_1} {β : Type u_2} (f : αβ) :
          WithBot αWithBot β

          Lift a map f : α → β to WithBot α → WithBot β. Implemented using Option.map.

          Equations
          Instances For
            @[simp]
            theorem WithBot.map_bot {α : Type u_1} {β : Type u_2} (f : αβ) :
            @[simp]
            theorem WithBot.map_coe {α : Type u_1} {β : Type u_2} (f : αβ) (a : α) :
            WithBot.map f a = ↑(f a)
            theorem WithBot.map_comm {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f₁ : αβ} {f₂ : αγ} {g₁ : βδ} {g₂ : γδ} (h : g₁ f₁ = g₂ f₂) (a : α) :
            WithBot.map g₁ (WithBot.map f₁ a) = WithBot.map g₂ (WithBot.map f₂ a)
            theorem WithBot.ne_bot_iff_exists {α : Type u_1} {x : WithBot α} :
            x a, a = x
            def WithBot.unbot {α : Type u_1} (x : WithBot α) :
            x α

            Deconstruct a x : WithBot α to the underlying value in α, given a proof that x ≠ ⊥.

            Equations
            Instances For
              @[simp]
              theorem WithBot.coe_unbot {α : Type u_1} (x : WithBot α) (h : x ) :
              ↑(WithBot.unbot x h) = x
              @[simp]
              theorem WithBot.unbot_coe {α : Type u_1} (x : α) (h : optParam (x ) (_ : x )) :
              WithBot.unbot (x) h = x
              instance WithBot.canLift {α : Type u_1} :
              CanLift (WithBot α) α WithBot.some fun r => r
              Equations
              instance WithBot.le {α : Type u_1} [LE α] :
              LE (WithBot α)
              Equations
              • WithBot.le = { le := fun o₁ o₂ => ∀ (a : α), a o₁b, b o₂ a b }
              @[simp]
              theorem WithBot.some_le_some {α : Type u_1} {a : α} {b : α} [LE α] :
              some a some b a b
              @[simp]
              theorem WithBot.coe_le_coe {α : Type u_1} {a : α} {b : α} [LE α] :
              a b a b
              @[simp]
              theorem WithBot.none_le {α : Type u_1} [LE α] {a : WithBot α} :
              none a
              instance WithBot.orderBot {α : Type u_1} [LE α] :
              Equations
              instance WithBot.orderTop {α : Type u_1} [LE α] [OrderTop α] :
              Equations
              instance WithBot.instBoundedOrder {α : Type u_1} [LE α] [OrderTop α] :
              Equations
              • WithBot.instBoundedOrder = let src := WithBot.orderBot; let src_1 := WithBot.orderTop; BoundedOrder.mk
              theorem WithBot.not_coe_le_bot {α : Type u_1} [LE α] (a : α) :
              ¬a
              @[simp]
              theorem WithBot.le_bot_iff {α : Type u_1} [LE α] {a : WithBot α} :

              There is a general version le_bot_iff, but this lemma does not require a PartialOrder.

              theorem WithBot.coe_le {α : Type u_1} {a : α} {b : α} [LE α] {o : Option α} :
              b o → (a o a b)
              theorem WithBot.coe_le_iff {α : Type u_1} {a : α} [LE α] {x : WithBot α} :
              a x b, x = b a b
              theorem WithBot.le_coe_iff {α : Type u_1} {b : α} [LE α] {x : WithBot α} :
              x b ∀ (a : α), x = aa b
              theorem IsMax.withBot {α : Type u_1} {a : α} [LE α] (h : IsMax a) :
              IsMax a
              theorem WithBot.le_unbot_iff {α : Type u_1} [LE α] {a : α} {b : WithBot α} (h : b ) :
              a WithBot.unbot b h a b
              theorem WithBot.unbot_le_iff {α : Type u_1} [LE α] {a : WithBot α} (h : a ) {b : α} :
              WithBot.unbot a h b a b
              instance WithBot.lt {α : Type u_1} [LT α] :
              LT (WithBot α)
              Equations
              • WithBot.lt = { lt := fun o₁ o₂ => b, b o₂ ∀ (a : α), a o₁a < b }
              @[simp]
              theorem WithBot.some_lt_some {α : Type u_1} {a : α} {b : α} [LT α] :
              some a < some b a < b
              @[simp]
              theorem WithBot.coe_lt_coe {α : Type u_1} {a : α} {b : α} [LT α] :
              a < b a < b
              @[simp]
              theorem WithBot.none_lt_some {α : Type u_1} [LT α] (a : α) :
              none < a
              theorem WithBot.bot_lt_coe {α : Type u_1} [LT α] (a : α) :
              < a
              @[simp]
              theorem WithBot.not_lt_none {α : Type u_1} [LT α] (a : WithBot α) :
              ¬a < none
              theorem WithBot.lt_iff_exists_coe {α : Type u_1} [LT α] {a : WithBot α} {b : WithBot α} :
              a < b p, b = p a < p
              theorem WithBot.lt_coe_iff {α : Type u_1} {b : α} [LT α] {x : WithBot α} :
              x < b ∀ (a : WithBot α), x = aa < b
              theorem WithBot.bot_lt_iff_ne_bot {α : Type u_1} [LT α] {x : WithBot α} :

              A version of bot_lt_iff_ne_bot for WithBot that only requires LT α, not PartialOrder α.

              instance WithBot.preorder {α : Type u_1} [Preorder α] :
              Equations
              Equations
              • WithBot.partialOrder = let src := WithBot.preorder; PartialOrder.mk (_ : ∀ (o₁ o₂ : WithBot α), o₁ o₂o₂ o₁o₁ = o₂)
              theorem WithBot.coe_strictMono {α : Type u_1} [Preorder α] :
              StrictMono fun a => a
              theorem WithBot.coe_mono {α : Type u_1} [Preorder α] :
              Monotone fun a => a
              theorem WithBot.monotone_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithBot αβ} :
              Monotone f (Monotone fun a => f a) ∀ (x : α), f f x
              @[simp]
              theorem WithBot.monotone_map_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :
              theorem Monotone.withBot_map {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :

              Alias of the reverse direction of WithBot.monotone_map_iff.

              theorem WithBot.strictMono_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithBot αβ} :
              StrictMono f (StrictMono fun a => f a) ∀ (x : α), f < f x
              theorem WithBot.strictAnti_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithBot αβ} :
              StrictAnti f (StrictAnti fun a => f a) ∀ (x : α), f x < f
              @[simp]
              theorem WithBot.strictMono_map_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :
              theorem StrictMono.withBot_map {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :

              Alias of the reverse direction of WithBot.strictMono_map_iff.

              theorem WithBot.map_le_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : αβ) (mono_iff : ∀ {a b : α}, f a f b a b) (a : WithBot α) (b : WithBot α) :
              theorem WithBot.le_coe_unbot' {α : Type u_1} [Preorder α] (a : WithBot α) (b : α) :
              a ↑(WithBot.unbot' b a)
              theorem WithBot.unbot'_le_iff {α : Type u_1} [LE α] {a : WithBot α} {b : α} {c : α} (h : a = b c) :
              WithBot.unbot' b a c a c
              theorem WithBot.unbot'_lt_iff {α : Type u_1} [LT α] {a : WithBot α} {b : α} {c : α} (h : a = b < c) :
              WithBot.unbot' b a < c a < c
              Equations
              • One or more equations did not get rendered due to their size.
              theorem WithBot.coe_sup {α : Type u_1} [SemilatticeSup α] (a : α) (b : α) :
              ↑(a b) = a b
              Equations
              • One or more equations did not get rendered due to their size.
              theorem WithBot.coe_inf {α : Type u_1} [SemilatticeInf α] (a : α) (b : α) :
              ↑(a b) = a b
              instance WithBot.lattice {α : Type u_1} [Lattice α] :
              Equations
              • One or more equations did not get rendered due to their size.
              Equations
              instance WithBot.decidableEq {α : Type u_1} [DecidableEq α] :
              Equations
              • WithBot.decidableEq = instDecidableEqOption
              instance WithBot.decidableLE {α : Type u_1} [LE α] [DecidableRel fun x x_1 => x x_1] :
              DecidableRel fun x x_1 => x x_1
              Equations
              • One or more equations did not get rendered due to their size.
              instance WithBot.decidableLT {α : Type u_1} [LT α] [DecidableRel fun x x_1 => x < x_1] :
              DecidableRel fun x x_1 => x < x_1
              Equations
              • One or more equations did not get rendered due to their size.
              instance WithBot.isTotal_le {α : Type u_1} [LE α] [IsTotal α fun x x_1 => x x_1] :
              IsTotal (WithBot α) fun x x_1 => x x_1
              Equations
              instance WithBot.linearOrder {α : Type u_1} [LinearOrder α] :
              Equations
              @[simp]
              theorem WithBot.coe_min {α : Type u_1} [LinearOrder α] (x : α) (y : α) :
              ↑(min x y) = min x y
              @[simp]
              theorem WithBot.coe_max {α : Type u_1} [LinearOrder α] (x : α) (y : α) :
              ↑(max x y) = max x y
              theorem WithBot.wellFounded_lt {α : Type u_1} [LT α] (h : WellFounded fun x x_1 => x < x_1) :
              WellFounded fun x x_1 => x < x_1
              theorem WithBot.lt_iff_exists_coe_btwn {α : Type u_1} [Preorder α] [DenselyOrdered α] [NoMinOrder α] {a : WithBot α} {b : WithBot α} :
              a < b x, a < x x < b
              def WithTop (α : Type u_5) :
              Type u_5

              Attach to a type.

              Equations
              Instances For
                instance WithTop.instReprWithTop {α : Type u_1} [Repr α] :
                Equations
                @[match_pattern]
                def WithTop.some {α : Type u_1} :
                αWithTop α

                The canonical map from α into WithTop α

                Equations
                • WithTop.some = some
                Instances For
                  instance WithTop.coeTC {α : Type u_1} :
                  CoeTC α (WithTop α)
                  Equations
                  • WithTop.coeTC = { coe := WithTop.some }
                  instance WithTop.top {α : Type u_1} :
                  Equations
                  • WithTop.top = { top := none }
                  instance WithTop.inhabited {α : Type u_1} :
                  Equations
                  • WithTop.inhabited = { default := }
                  instance WithTop.nontrivial {α : Type u_1} [Nonempty α] :
                  Equations
                  theorem WithTop.coe_injective {α : Type u_1} :
                  Function.Injective WithTop.some
                  theorem WithTop.coe_inj {α : Type u_1} {a : α} {b : α} :
                  a = b a = b
                  theorem WithTop.forall {α : Type u_1} {p : WithTop αProp} :
                  ((x : WithTop α) → p x) p ((x : α) → p x)
                  theorem WithTop.exists {α : Type u_1} {p : WithTop αProp} :
                  (x, p x) p x, p x
                  theorem WithTop.none_eq_top {α : Type u_1} :
                  none =
                  theorem WithTop.some_eq_coe {α : Type u_1} (a : α) :
                  some a = a
                  @[simp]
                  theorem WithTop.top_ne_coe {α : Type u_1} {a : α} :
                  a
                  @[simp]
                  theorem WithTop.coe_ne_top {α : Type u_1} {a : α} :
                  a
                  def WithTop.recTopCoe {α : Type u_1} {C : WithTop αSort u_5} (top : C ) (coe : (a : α) → C a) (n : WithTop α) :
                  C n

                  Recursor for WithTop using the preferred forms and ↑a.

                  Equations
                  Instances For
                    @[simp]
                    theorem WithTop.recTopCoe_top {α : Type u_1} {C : WithTop αSort u_5} (d : C ) (f : (a : α) → C a) :
                    @[simp]
                    theorem WithTop.recTopCoe_coe {α : Type u_1} {C : WithTop αSort u_5} (d : C ) (f : (a : α) → C a) (x : α) :
                    WithTop.recTopCoe d f x = f x

                    WithTop.toDual is the equivalence sending to and any a : α to toDual a : αᵒᵈ. See WithTop.toDualBotEquiv for the related order-iso.

                    Equations
                    Instances For

                      WithTop.ofDual is the equivalence sending to and any a : αᵒᵈ to ofDual a : α. See WithTop.toDualBotEquiv for the related order-iso.

                      Equations
                      Instances For

                        WithBot.toDual is the equivalence sending to and any a : α to toDual a : αᵒᵈ. See WithBot.toDual_top_equiv for the related order-iso.

                        Equations
                        Instances For

                          WithBot.ofDual is the equivalence sending to and any a : αᵒᵈ to ofDual a : α. See WithBot.ofDual_top_equiv for the related order-iso.

                          Equations
                          Instances For
                            @[simp]
                            theorem WithTop.toDual_symm_apply {α : Type u_1} (a : WithBot αᵒᵈ) :
                            WithTop.toDual.symm a = WithBot.ofDual a
                            @[simp]
                            theorem WithTop.ofDual_symm_apply {α : Type u_1} (a : WithBot α) :
                            WithTop.ofDual.symm a = WithBot.toDual a
                            @[simp]
                            theorem WithTop.toDual_apply_top {α : Type u_1} :
                            WithTop.toDual =
                            @[simp]
                            theorem WithTop.ofDual_apply_top {α : Type u_1} :
                            WithTop.ofDual =
                            @[simp]
                            theorem WithTop.toDual_apply_coe {α : Type u_1} (a : α) :
                            WithTop.toDual a = ↑(OrderDual.toDual a)
                            @[simp]
                            theorem WithTop.ofDual_apply_coe {α : Type u_1} (a : αᵒᵈ) :
                            WithTop.ofDual a = ↑(OrderDual.ofDual a)
                            def WithTop.untop' {α : Type u_1} (d : α) (x : WithTop α) :
                            α

                            Specialization of Option.getD to values in WithTop α that respects API boundaries.

                            Equations
                            Instances For
                              @[simp]
                              theorem WithTop.untop'_top {α : Type u_5} (d : α) :
                              @[simp]
                              theorem WithTop.untop'_coe {α : Type u_5} (d : α) (x : α) :
                              WithTop.untop' d x = x
                              @[simp]
                              theorem WithTop.coe_eq_coe {α : Type u_1} {a : α} {b : α} :
                              a = b a = b
                              theorem WithTop.untop'_eq_iff {α : Type u_1} {d : α} {y : α} {x : WithTop α} :
                              WithTop.untop' d x = y x = y x = y = d
                              @[simp]
                              theorem WithTop.untop'_eq_self_iff {α : Type u_1} {d : α} {x : WithTop α} :
                              WithTop.untop' d x = d x = d x =
                              theorem WithTop.untop'_eq_untop'_iff {α : Type u_1} {d : α} {x : WithTop α} {y : WithTop α} :
                              WithTop.untop' d x = WithTop.untop' d y x = y x = d y = x = y = d
                              def WithTop.map {α : Type u_1} {β : Type u_2} (f : αβ) :
                              WithTop αWithTop β

                              Lift a map f : α → β to WithTop α → WithTop β. Implemented using Option.map.

                              Equations
                              Instances For
                                @[simp]
                                theorem WithTop.map_top {α : Type u_1} {β : Type u_2} (f : αβ) :
                                @[simp]
                                theorem WithTop.map_coe {α : Type u_1} {β : Type u_2} (f : αβ) (a : α) :
                                WithTop.map f a = ↑(f a)
                                theorem WithTop.map_comm {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f₁ : αβ} {f₂ : αγ} {g₁ : βδ} {g₂ : γδ} (h : g₁ f₁ = g₂ f₂) (a : α) :
                                WithTop.map g₁ (WithTop.map f₁ a) = WithTop.map g₂ (WithTop.map f₂ a)
                                theorem WithTop.map_toDual {α : Type u_1} {β : Type u_2} (f : αᵒᵈβᵒᵈ) (a : WithBot α) :
                                WithTop.map f (WithBot.toDual a) = WithBot.map (OrderDual.toDual f) a
                                theorem WithTop.map_ofDual {α : Type u_1} {β : Type u_2} (f : αβ) (a : WithBot αᵒᵈ) :
                                WithTop.map f (WithBot.ofDual a) = WithBot.map (OrderDual.ofDual f) a
                                theorem WithTop.toDual_map {α : Type u_1} {β : Type u_2} (f : αβ) (a : WithTop α) :
                                WithTop.toDual (WithTop.map f a) = WithBot.map (OrderDual.toDual f OrderDual.ofDual) (WithTop.toDual a)
                                theorem WithTop.ofDual_map {α : Type u_1} {β : Type u_2} (f : αᵒᵈβᵒᵈ) (a : WithTop αᵒᵈ) :
                                WithTop.ofDual (WithTop.map f a) = WithBot.map (OrderDual.ofDual f OrderDual.toDual) (WithTop.ofDual a)
                                theorem WithTop.ne_top_iff_exists {α : Type u_1} {x : WithTop α} :
                                x a, a = x
                                def WithTop.untop {α : Type u_1} (x : WithTop α) :
                                x α

                                Deconstruct a x : WithTop α to the underlying value in α, given a proof that x ≠ ⊤.

                                Equations
                                • WithTop.untop = WithBot.unbot
                                Instances For
                                  @[simp]
                                  theorem WithTop.coe_untop {α : Type u_1} (x : WithTop α) (h : x ) :
                                  ↑(WithTop.untop x h) = x
                                  @[simp]
                                  theorem WithTop.untop_coe {α : Type u_1} (x : α) (h : optParam (x ) (_ : x )) :
                                  WithTop.untop (x) h = x
                                  instance WithTop.canLift {α : Type u_1} :
                                  CanLift (WithTop α) α WithTop.some fun r => r
                                  Equations
                                  instance WithTop.le {α : Type u_1} [LE α] :
                                  LE (WithTop α)
                                  Equations
                                  • WithTop.le = { le := fun o₁ o₂ => ∀ (a : α), a o₂b, b o₁ b a }
                                  theorem WithTop.toDual_le_iff {α : Type u_1} [LE α] {a : WithTop α} {b : WithBot αᵒᵈ} :
                                  WithTop.toDual a b WithBot.ofDual b a
                                  theorem WithTop.le_toDual_iff {α : Type u_1} [LE α] {a : WithBot αᵒᵈ} {b : WithTop α} :
                                  a WithTop.toDual b b WithBot.ofDual a
                                  @[simp]
                                  theorem WithTop.toDual_le_toDual_iff {α : Type u_1} [LE α] {a : WithTop α} {b : WithTop α} :
                                  WithTop.toDual a WithTop.toDual b b a
                                  theorem WithTop.ofDual_le_iff {α : Type u_1} [LE α] {a : WithTop αᵒᵈ} {b : WithBot α} :
                                  WithTop.ofDual a b WithBot.toDual b a
                                  theorem WithTop.le_ofDual_iff {α : Type u_1} [LE α] {a : WithBot α} {b : WithTop αᵒᵈ} :
                                  a WithTop.ofDual b b WithBot.toDual a
                                  @[simp]
                                  theorem WithTop.ofDual_le_ofDual_iff {α : Type u_1} [LE α] {a : WithTop αᵒᵈ} {b : WithTop αᵒᵈ} :
                                  WithTop.ofDual a WithTop.ofDual b b a
                                  @[simp]
                                  theorem WithTop.coe_le_coe {α : Type u_1} {a : α} {b : α} [LE α] :
                                  a b a b
                                  @[simp]
                                  theorem WithTop.some_le_some {α : Type u_1} {a : α} {b : α} [LE α] :
                                  some a some b a b
                                  @[simp]
                                  theorem WithTop.le_none {α : Type u_1} [LE α] {a : WithTop α} :
                                  a none
                                  instance WithTop.orderTop {α : Type u_1} [LE α] :
                                  Equations
                                  instance WithTop.orderBot {α : Type u_1} [LE α] [OrderBot α] :
                                  Equations
                                  instance WithTop.boundedOrder {α : Type u_1} [LE α] [OrderBot α] :
                                  Equations
                                  • WithTop.boundedOrder = let src := WithTop.orderTop; let src_1 := WithTop.orderBot; BoundedOrder.mk
                                  theorem WithTop.not_top_le_coe {α : Type u_1} [LE α] (a : α) :
                                  ¬ a
                                  @[simp]
                                  theorem WithTop.top_le_iff {α : Type u_1} [LE α] {a : WithTop α} :

                                  There is a general version top_le_iff, but this lemma does not require a PartialOrder.

                                  theorem WithTop.le_coe {α : Type u_1} {a : α} {b : α} [LE α] {o : Option α} :
                                  a o → (o b a b)
                                  theorem WithTop.le_coe_iff {α : Type u_1} {b : α} [LE α] {x : WithTop α} :
                                  x b a, x = a a b
                                  theorem WithTop.coe_le_iff {α : Type u_1} {a : α} [LE α] {x : WithTop α} :
                                  a x ∀ (b : α), x = ba b
                                  theorem IsMin.withTop {α : Type u_1} {a : α} [LE α] (h : IsMin a) :
                                  IsMin a
                                  theorem WithTop.untop_le_iff {α : Type u_1} [LE α] {a : WithTop α} {b : α} (h : a ) :
                                  WithTop.untop a h b a b
                                  theorem WithTop.le_untop_iff {α : Type u_1} [LE α] {a : α} {b : WithTop α} (h : b ) :
                                  a WithTop.untop b h a b
                                  instance WithTop.lt {α : Type u_1} [LT α] :
                                  LT (WithTop α)
                                  Equations
                                  • WithTop.lt = { lt := fun o₁ o₂ => b, b o₁ ∀ (a : α), a o₂b < a }
                                  theorem WithTop.toDual_lt_iff {α : Type u_1} [LT α] {a : WithTop α} {b : WithBot αᵒᵈ} :
                                  WithTop.toDual a < b WithBot.ofDual b < a
                                  theorem WithTop.lt_toDual_iff {α : Type u_1} [LT α] {a : WithBot αᵒᵈ} {b : WithTop α} :
                                  a < WithTop.toDual b b < WithBot.ofDual a
                                  @[simp]
                                  theorem WithTop.toDual_lt_toDual_iff {α : Type u_1} [LT α] {a : WithTop α} {b : WithTop α} :
                                  WithTop.toDual a < WithTop.toDual b b < a
                                  theorem WithTop.ofDual_lt_iff {α : Type u_1} [LT α] {a : WithTop αᵒᵈ} {b : WithBot α} :
                                  WithTop.ofDual a < b WithBot.toDual b < a
                                  theorem WithTop.lt_ofDual_iff {α : Type u_1} [LT α] {a : WithBot α} {b : WithTop αᵒᵈ} :
                                  a < WithTop.ofDual b b < WithBot.toDual a
                                  @[simp]
                                  theorem WithTop.ofDual_lt_ofDual_iff {α : Type u_1} [LT α] {a : WithTop αᵒᵈ} {b : WithTop αᵒᵈ} :
                                  WithTop.ofDual a < WithTop.ofDual b b < a
                                  @[simp]
                                  theorem WithBot.toDual_symm_apply {α : Type u_1} (a : WithTop αᵒᵈ) :
                                  WithBot.toDual.symm a = WithTop.ofDual a
                                  @[simp]
                                  theorem WithBot.ofDual_symm_apply {α : Type u_1} (a : WithTop α) :
                                  WithBot.ofDual.symm a = WithTop.toDual a
                                  @[simp]
                                  theorem WithBot.toDual_apply_bot {α : Type u_1} :
                                  WithBot.toDual =
                                  @[simp]
                                  theorem WithBot.ofDual_apply_bot {α : Type u_1} :
                                  WithBot.ofDual =
                                  @[simp]
                                  theorem WithBot.toDual_apply_coe {α : Type u_1} (a : α) :
                                  WithBot.toDual a = ↑(OrderDual.toDual a)
                                  @[simp]
                                  theorem WithBot.ofDual_apply_coe {α : Type u_1} (a : αᵒᵈ) :
                                  WithBot.ofDual a = ↑(OrderDual.ofDual a)
                                  theorem WithBot.map_toDual {α : Type u_1} {β : Type u_2} (f : αᵒᵈβᵒᵈ) (a : WithTop α) :
                                  WithBot.map f (WithTop.toDual a) = WithTop.map (OrderDual.toDual f) a
                                  theorem WithBot.map_ofDual {α : Type u_1} {β : Type u_2} (f : αβ) (a : WithTop αᵒᵈ) :
                                  WithBot.map f (WithTop.ofDual a) = WithTop.map (OrderDual.ofDual f) a
                                  theorem WithBot.toDual_map {α : Type u_1} {β : Type u_2} (f : αβ) (a : WithBot α) :
                                  WithBot.toDual (WithBot.map f a) = WithBot.map (OrderDual.toDual f OrderDual.ofDual) (WithBot.toDual a)
                                  theorem WithBot.ofDual_map {α : Type u_1} {β : Type u_2} (f : αᵒᵈβᵒᵈ) (a : WithBot αᵒᵈ) :
                                  WithBot.ofDual (WithBot.map f a) = WithBot.map (OrderDual.ofDual f OrderDual.toDual) (WithBot.ofDual a)
                                  theorem WithBot.toDual_le_iff {α : Type u_1} [LE α] {a : WithBot α} {b : WithTop αᵒᵈ} :
                                  WithBot.toDual a b WithTop.ofDual b a
                                  theorem WithBot.le_toDual_iff {α : Type u_1} [LE α] {a : WithTop αᵒᵈ} {b : WithBot α} :
                                  a WithBot.toDual b b WithTop.ofDual a
                                  @[simp]
                                  theorem WithBot.toDual_le_toDual_iff {α : Type u_1} [LE α] {a : WithBot α} {b : WithBot α} :
                                  WithBot.toDual a WithBot.toDual b b a
                                  theorem WithBot.ofDual_le_iff {α : Type u_1} [LE α] {a : WithBot αᵒᵈ} {b : WithTop α} :
                                  WithBot.ofDual a b WithTop.toDual b a
                                  theorem WithBot.le_ofDual_iff {α : Type u_1} [LE α] {a : WithTop α} {b : WithBot αᵒᵈ} :
                                  a WithBot.ofDual b b WithTop.toDual a
                                  @[simp]
                                  theorem WithBot.ofDual_le_ofDual_iff {α : Type u_1} [LE α] {a : WithBot αᵒᵈ} {b : WithBot αᵒᵈ} :
                                  WithBot.ofDual a WithBot.ofDual b b a
                                  theorem WithBot.toDual_lt_iff {α : Type u_1} [LT α] {a : WithBot α} {b : WithTop αᵒᵈ} :
                                  WithBot.toDual a < b WithTop.ofDual b < a
                                  theorem WithBot.lt_toDual_iff {α : Type u_1} [LT α] {a : WithTop αᵒᵈ} {b : WithBot α} :
                                  a < WithBot.toDual b b < WithTop.ofDual a
                                  @[simp]
                                  theorem WithBot.toDual_lt_toDual_iff {α : Type u_1} [LT α] {a : WithBot α} {b : WithBot α} :
                                  WithBot.toDual a < WithBot.toDual b b < a
                                  theorem WithBot.ofDual_lt_iff {α : Type u_1} [LT α] {a : WithBot αᵒᵈ} {b : WithTop α} :
                                  WithBot.ofDual a < b WithTop.toDual b < a
                                  theorem WithBot.lt_ofDual_iff {α : Type u_1} [LT α] {a : WithTop α} {b : WithBot αᵒᵈ} :
                                  a < WithBot.ofDual b b < WithTop.toDual a
                                  @[simp]
                                  theorem WithBot.ofDual_lt_ofDual_iff {α : Type u_1} [LT α] {a : WithBot αᵒᵈ} {b : WithBot αᵒᵈ} :
                                  WithBot.ofDual a < WithBot.ofDual b b < a
                                  @[simp]
                                  theorem WithTop.coe_lt_coe {α : Type u_1} [LT α] {a : α} {b : α} :
                                  a < b a < b
                                  @[simp]
                                  theorem WithTop.some_lt_some {α : Type u_1} [LT α] {a : α} {b : α} :
                                  some a < some b a < b
                                  theorem WithTop.coe_lt_top {α : Type u_1} [LT α] (a : α) :
                                  a <
                                  @[simp]
                                  theorem WithTop.some_lt_none {α : Type u_1} [LT α] (a : α) :
                                  some a < none
                                  @[simp]
                                  theorem WithTop.not_none_lt {α : Type u_1} [LT α] (a : WithTop α) :
                                  ¬none < a
                                  theorem WithTop.lt_iff_exists_coe {α : Type u_1} [LT α] {a : WithTop α} {b : WithTop α} :
                                  a < b p, a = p p < b
                                  theorem WithTop.coe_lt_iff {α : Type u_1} [LT α] {a : α} {x : WithTop α} :
                                  a < x ∀ (b : WithTop α), x = ba < b
                                  theorem WithTop.lt_top_iff_ne_top {α : Type u_1} [LT α] {x : WithTop α} :

                                  A version of lt_top_iff_ne_top for WithTop that only requires LT α, not PartialOrder α.

                                  instance WithTop.preorder {α : Type u_1} [Preorder α] :
                                  Equations
                                  Equations
                                  theorem WithTop.coe_strictMono {α : Type u_1} [Preorder α] :
                                  StrictMono fun a => a
                                  theorem WithTop.coe_mono {α : Type u_1} [Preorder α] :
                                  Monotone fun a => a
                                  theorem WithTop.monotone_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithTop αβ} :
                                  Monotone f (Monotone fun a => f a) ∀ (x : α), f x f
                                  @[simp]
                                  theorem WithTop.monotone_map_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :
                                  theorem Monotone.withTop_map {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :

                                  Alias of the reverse direction of WithTop.monotone_map_iff.

                                  theorem WithTop.strictMono_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithTop αβ} :
                                  StrictMono f (StrictMono fun a => f a) ∀ (x : α), f x < f
                                  theorem WithTop.strictAnti_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithTop αβ} :
                                  StrictAnti f (StrictAnti fun a => f a) ∀ (x : α), f < f x
                                  @[simp]
                                  theorem WithTop.strictMono_map_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :
                                  theorem StrictMono.withTop_map {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :

                                  Alias of the reverse direction of WithTop.strictMono_map_iff.

                                  theorem WithTop.map_le_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : αβ) (a : WithTop α) (b : WithTop α) (mono_iff : ∀ {a b : α}, f a f b a b) :
                                  theorem WithTop.coe_untop'_le {α : Type u_1} [Preorder α] (a : WithTop α) (b : α) :
                                  ↑(WithTop.untop' b a) a
                                  theorem WithTop.le_untop'_iff {α : Type u_1} [LE α] {a : WithTop α} {b : α} {c : α} (h : a = c b) :
                                  c WithTop.untop' b a c a
                                  theorem WithTop.lt_untop'_iff {α : Type u_1} [LT α] {a : WithTop α} {b : α} {c : α} (h : a = c < b) :
                                  c < WithTop.untop' b a c < a
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  theorem WithTop.coe_inf {α : Type u_1} [SemilatticeInf α] (a : α) (b : α) :
                                  ↑(a b) = a b
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  theorem WithTop.coe_sup {α : Type u_1} [SemilatticeSup α] (a : α) (b : α) :
                                  ↑(a b) = a b
                                  instance WithTop.lattice {α : Type u_1} [Lattice α] :
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Equations
                                  instance WithTop.decidableEq {α : Type u_1} [DecidableEq α] :
                                  Equations
                                  • WithTop.decidableEq = instDecidableEqOption
                                  instance WithTop.decidableLE {α : Type u_1} [LE α] [DecidableRel fun x x_1 => x x_1] :
                                  DecidableRel fun x x_1 => x x_1
                                  Equations
                                  instance WithTop.decidableLT {α : Type u_1} [LT α] [DecidableRel fun x x_1 => x < x_1] :
                                  DecidableRel fun x x_1 => x < x_1
                                  Equations
                                  instance WithTop.isTotal_le {α : Type u_1} [LE α] [IsTotal α fun x x_1 => x x_1] :
                                  IsTotal (WithTop α) fun x x_1 => x x_1
                                  Equations
                                  instance WithTop.linearOrder {α : Type u_1} [LinearOrder α] :
                                  Equations
                                  @[simp]
                                  theorem WithTop.coe_min {α : Type u_1} [LinearOrder α] (x : α) (y : α) :
                                  ↑(min x y) = min x y
                                  @[simp]
                                  theorem WithTop.coe_max {α : Type u_1} [LinearOrder α] (x : α) (y : α) :
                                  ↑(max x y) = max x y
                                  theorem WithTop.wellFounded_lt {α : Type u_1} [LT α] (h : WellFounded fun x x_1 => x < x_1) :
                                  WellFounded fun x x_1 => x < x_1
                                  theorem WithTop.wellFounded_gt {α : Type u_1} [LT α] (h : WellFounded fun x x_1 => x > x_1) :
                                  WellFounded fun x x_1 => x > x_1
                                  theorem WithBot.wellFounded_gt {α : Type u_1} [LT α] (h : WellFounded fun x x_1 => x > x_1) :
                                  WellFounded fun x x_1 => x > x_1
                                  instance WithTop.trichotomous.lt {α : Type u_1} [Preorder α] [IsTrichotomous α fun x x_1 => x < x_1] :
                                  IsTrichotomous (WithTop α) fun x x_1 => x < x_1
                                  Equations
                                  instance WithTop.IsWellOrder.lt {α : Type u_1} [Preorder α] [h : IsWellOrder α fun x x_1 => x < x_1] :
                                  IsWellOrder (WithTop α) fun x x_1 => x < x_1
                                  Equations
                                  instance WithTop.trichotomous.gt {α : Type u_1} [Preorder α] [IsTrichotomous α fun x x_1 => x > x_1] :
                                  IsTrichotomous (WithTop α) fun x x_1 => x > x_1
                                  Equations
                                  instance WithTop.IsWellOrder.gt {α : Type u_1} [Preorder α] [h : IsWellOrder α fun x x_1 => x > x_1] :
                                  IsWellOrder (WithTop α) fun x x_1 => x > x_1
                                  Equations
                                  instance WithBot.trichotomous.lt {α : Type u_1} [Preorder α] [h : IsTrichotomous α fun x x_1 => x < x_1] :
                                  IsTrichotomous (WithBot α) fun x x_1 => x < x_1
                                  Equations
                                  instance WithBot.isWellOrder.lt {α : Type u_1} [Preorder α] [h : IsWellOrder α fun x x_1 => x < x_1] :
                                  IsWellOrder (WithBot α) fun x x_1 => x < x_1
                                  Equations
                                  instance WithBot.trichotomous.gt {α : Type u_1} [Preorder α] [h : IsTrichotomous α fun x x_1 => x > x_1] :
                                  IsTrichotomous (WithBot α) fun x x_1 => x > x_1
                                  Equations
                                  instance WithBot.isWellOrder.gt {α : Type u_1} [Preorder α] [h : IsWellOrder α fun x x_1 => x > x_1] :
                                  IsWellOrder (WithBot α) fun x x_1 => x > x_1
                                  Equations
                                  theorem WithTop.lt_iff_exists_coe_btwn {α : Type u_1} [Preorder α] [DenselyOrdered α] [NoMaxOrder α] {a : WithTop α} {b : WithTop α} :
                                  a < b x, a < x x < b