Documentation

Mathlib.LinearAlgebra.TensorProduct

Tensor product of modules over commutative semirings. #

This file constructs the tensor product of modules over commutative semirings. Given a semiring R and modules over it M and N, the standard construction of the tensor product is TensorProduct R M N. It is also a module over R.

It comes with a canonical bilinear map M → N → TensorProduct R M N.

Given any bilinear map M → N → P, there is a unique linear map TensorProduct R M N → P whose composition with the canonical bilinear map M → N → TensorProduct R M N is the given bilinear map M → N → P.

We start by proving basic lemmas about bilinear maps.

Notations #

This file uses the localized notation M ⊗ N and M ⊗[R] N for TensorProduct R M N, as well as m ⊗ₜ n and m ⊗ₜ[R] n for TensorProduct.tmul R m n.

Tags #

bilinear, tensor, tensor product

inductive TensorProduct.Eqv (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
FreeAddMonoid (M × N)FreeAddMonoid (M × N)Prop

The relation on FreeAddMonoid (M × N) that generates a congruence whose quotient is the tensor product.

Instances For
    def TensorProduct (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
    Type (max u_4 u_5)

    The tensor product of two modules M and N over the same commutative semiring R. The localized notations are M ⊗ N and M ⊗[R] N, accessed by open scoped TensorProduct.

    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def TensorProduct.addMonoid {R : Type u_1} [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            instance TensorProduct.add {R : Type u_1} [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
            Equations
            instance TensorProduct.addZeroClass {R : Type u_1} [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
            Equations
            • One or more equations did not get rendered due to their size.
            instance TensorProduct.addSemigroup {R : Type u_1} [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
            Equations
            • One or more equations did not get rendered due to their size.
            instance TensorProduct.addCommSemigroup {R : Type u_1} [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
            Equations
            def TensorProduct.tmul (R : Type u_1) [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (m : M) (n : N) :

            The canonical function M → N → M ⊗ N. The localized notations are m ⊗ₜ n and m ⊗ₜ[R] n, accessed by open scoped TensorProduct.

            Equations
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem TensorProduct.induction_on {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] {motive : TensorProduct R M NProp} (z : TensorProduct R M N) (zero : motive 0) (tmul : (x : M) → (y : N) → motive (x ⊗ₜ[R] y)) (add : (x y : TensorProduct R M N) → motive xmotive ymotive (x + y)) :
                  motive z
                  @[simp]
                  theorem TensorProduct.zero_tmul {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (n : N) :
                  0 ⊗ₜ[R] n = 0
                  theorem TensorProduct.add_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (m₁ : M) (m₂ : M) (n : N) :
                  (m₁ + m₂) ⊗ₜ[R] n = m₁ ⊗ₜ[R] n + m₂ ⊗ₜ[R] n
                  @[simp]
                  theorem TensorProduct.tmul_zero {R : Type u_1} [CommSemiring R] {M : Type u_4} (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (m : M) :
                  m ⊗ₜ[R] 0 = 0
                  theorem TensorProduct.tmul_add {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (m : M) (n₁ : N) (n₂ : N) :
                  m ⊗ₜ[R] (n₁ + n₂) = m ⊗ₜ[R] n₁ + m ⊗ₜ[R] n₂
                  class TensorProduct.CompatibleSMul (R : Type u_1) [CommSemiring R] (R' : Type u_2) [Monoid R'] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [DistribMulAction R' N] :

                  A typeclass for SMul structures which can be moved across a tensor product.

                  This typeclass is generated automatically from an IsScalarTower instance, but exists so that we can also add an instance for AddCommGroup.intModule, allowing z • to be moved even if R does not support negation.

                  Note that Module R' (M ⊗[R] N) is available even without this typeclass on R'; it's only needed if TensorProduct.smul_tmul, TensorProduct.smul_tmul', or TensorProduct.tmul_smul is used.

                  Instances
                    instance TensorProduct.CompatibleSMul.isScalarTower {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMul R' R] [IsScalarTower R' R M] [DistribMulAction R' N] [IsScalarTower R' R N] :

                    Note that this provides the default compatible_smul R R M N instance through IsScalarTower.left.

                    Equations
                    theorem TensorProduct.smul_tmul {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [DistribMulAction R' N] [TensorProduct.CompatibleSMul R R' M N] (r : R') (m : M) (n : N) :
                    (r m) ⊗ₜ[R] n = m ⊗ₜ[R] (r n)

                    smul can be moved from one side of the product to the other .

                    def TensorProduct.SMul.aux {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] {R' : Type u_9} [SMul R' M] (r : R') :

                    Auxiliary function to defining scalar multiplication on tensor product.

                    Equations
                    Instances For
                      theorem TensorProduct.SMul.aux_of {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] {R' : Type u_9} [SMul R' M] (r : R') (m : M) (n : N) :
                      instance TensorProduct.leftHasSMul {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] :
                      SMul R' (TensorProduct R M N)

                      Given two modules over a commutative semiring R, if one of the factors carries a (distributive) action of a second type of scalars R', which commutes with the action of R, then the tensor product (over R) carries an action of R'.

                      This instance defines this R' action in the case that it is the left module which has the R' action. Two natural ways in which this situation arises are:

                      • Extension of scalars
                      • A tensor product of a group representation with a module not carrying an action

                      Note that in the special case that R = R', since R is commutative, we just get the usual scalar action on a tensor product of two modules. This special case is important enough that, for performance reasons, we define it explicitly below.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      instance TensorProduct.instSMulTensorProduct {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
                      Equations
                      • TensorProduct.instSMulTensorProduct = TensorProduct.leftHasSMul
                      theorem TensorProduct.smul_zero {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] (r : R') :
                      r 0 = 0
                      theorem TensorProduct.smul_add {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] (r : R') (x : TensorProduct R M N) (y : TensorProduct R M N) :
                      r (x + y) = r x + r y
                      theorem TensorProduct.zero_smul {R : Type u_1} [CommSemiring R] {R'' : Type u_3} [Semiring R''] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module R'' M] [SMulCommClass R R'' M] (x : TensorProduct R M N) :
                      0 x = 0
                      theorem TensorProduct.one_smul {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] (x : TensorProduct R M N) :
                      1 x = x
                      theorem TensorProduct.add_smul {R : Type u_1} [CommSemiring R] {R'' : Type u_3} [Semiring R''] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module R'' M] [SMulCommClass R R'' M] (r : R'') (s : R'') (x : TensorProduct R M N) :
                      (r + s) x = r x + s x
                      instance TensorProduct.addCommMonoid {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
                      Equations
                      instance TensorProduct.leftDistribMulAction {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] :
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Equations
                      • TensorProduct.instDistribMulActionTensorProductToMonoidToMonoidWithZeroToSemiringToAddMonoidAddCommMonoid = TensorProduct.leftDistribMulAction
                      theorem TensorProduct.smul_tmul' {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] (r : R') (m : M) (n : N) :
                      r m ⊗ₜ[R] n = (r m) ⊗ₜ[R] n
                      @[simp]
                      theorem TensorProduct.tmul_smul {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] [DistribMulAction R' N] [TensorProduct.CompatibleSMul R R' M N] (r : R') (x : M) (y : N) :
                      x ⊗ₜ[R] (r y) = r x ⊗ₜ[R] y
                      theorem TensorProduct.smul_tmul_smul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (r : R) (s : R) (m : M) (n : N) :
                      (r m) ⊗ₜ[R] (s n) = (r * s) m ⊗ₜ[R] n
                      instance TensorProduct.leftModule {R : Type u_1} [CommSemiring R] {R'' : Type u_3} [Semiring R''] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module R'' M] [SMulCommClass R R'' M] :
                      Module R'' (TensorProduct R M N)
                      Equations
                      Equations
                      • TensorProduct.instModuleTensorProductToSemiringAddCommMonoid = TensorProduct.leftModule
                      instance TensorProduct.smulCommClass_left {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] {R'₂ : Type u_9} [Monoid R'₂] [DistribMulAction R'₂ M] [SMulCommClass R R'₂ M] [SMulCommClass R' R'₂ M] :
                      SMulCommClass R' R'₂ (TensorProduct R M N)

                      SMulCommClass R' R'₂ M implies SMulCommClass R' R'₂ (M ⊗[R] N)

                      Equations
                      instance TensorProduct.isScalarTower_left {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] {R'₂ : Type u_9} [Monoid R'₂] [DistribMulAction R'₂ M] [SMulCommClass R R'₂ M] [SMul R'₂ R'] [IsScalarTower R'₂ R' M] :
                      IsScalarTower R'₂ R' (TensorProduct R M N)

                      IsScalarTower R'₂ R' M implies IsScalarTower R'₂ R' (M ⊗[R] N)

                      Equations
                      instance TensorProduct.isScalarTower_right {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] {R'₂ : Type u_9} [Monoid R'₂] [DistribMulAction R'₂ M] [SMulCommClass R R'₂ M] [SMul R'₂ R'] [DistribMulAction R'₂ N] [DistribMulAction R' N] [TensorProduct.CompatibleSMul R R'₂ M N] [TensorProduct.CompatibleSMul R R' M N] [IsScalarTower R'₂ R' N] :
                      IsScalarTower R'₂ R' (TensorProduct R M N)

                      IsScalarTower R'₂ R' N implies IsScalarTower R'₂ R' (M ⊗[R] N)

                      Equations
                      instance TensorProduct.isScalarTower {R : Type u_1} [CommSemiring R] {R' : Type u_2} [Monoid R'] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [DistribMulAction R' M] [SMulCommClass R R' M] [SMul R' R] [IsScalarTower R' R M] :

                      A short-cut instance for the common case, where the requirements for the compatible_smul instances are sufficient.

                      Equations
                      def TensorProduct.mk (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :

                      The canonical bilinear map M → N → M ⊗[R] N.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem TensorProduct.mk_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (m : M) (n : N) :
                        ↑(↑(TensorProduct.mk R M N) m) n = m ⊗ₜ[R] n
                        theorem TensorProduct.ite_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (x₁ : M) (x₂ : N) (P : Prop) [Decidable P] :
                        (if P then x₁ else 0) ⊗ₜ[R] x₂ = if P then x₁ ⊗ₜ[R] x₂ else 0
                        theorem TensorProduct.tmul_ite {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (x₁ : M) (x₂ : N) (P : Prop) [Decidable P] :
                        (x₁ ⊗ₜ[R] if P then x₂ else 0) = if P then x₁ ⊗ₜ[R] x₂ else 0
                        theorem TensorProduct.sum_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] {α : Type u_9} (s : Finset α) (m : αM) (n : N) :
                        (Finset.sum s fun a => m a) ⊗ₜ[R] n = Finset.sum s fun a => m a ⊗ₜ[R] n
                        theorem TensorProduct.tmul_sum {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (m : M) {α : Type u_9} (s : Finset α) (n : αN) :
                        (m ⊗ₜ[R] Finset.sum s fun a => n a) = Finset.sum s fun a => m ⊗ₜ[R] n a
                        theorem TensorProduct.span_tmul_eq_top (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
                        Submodule.span R {t | m n, m ⊗ₜ[R] n = t} =

                        The simple (aka pure) elements span the tensor product.

                        theorem TensorProduct.exists_eq_tmul_of_forall (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (x : TensorProduct R M N) (h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n) :
                        m n, x = m ⊗ₜ[R] n
                        def TensorProduct.liftAux {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : M →ₗ[R] N →ₗ[R] P) :

                        Auxiliary function to constructing a linear map M ⊗ N → P given a bilinear map M → N → P with the property that its composition with the canonical bilinear map M → N → M ⊗ N is the given bilinear map M → N → P.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem TensorProduct.liftAux_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : M →ₗ[R] N →ₗ[R] P) (m : M) (n : N) :
                          ↑(TensorProduct.liftAux f) (m ⊗ₜ[R] n) = ↑(f m) n
                          @[simp]
                          theorem TensorProduct.liftAux.smul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N →ₗ[R] P} (r : R) (x : TensorProduct R M N) :
                          def TensorProduct.lift {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : M →ₗ[R] N →ₗ[R] P) :

                          Constructing a linear map M ⊗ N → P given a bilinear map M → N → P with the property that its composition with the canonical bilinear map M → N → M ⊗ N is the given bilinear map M → N → P.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem TensorProduct.lift.tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N →ₗ[R] P} (x : M) (y : N) :
                            ↑(TensorProduct.lift f) (x ⊗ₜ[R] y) = ↑(f x) y
                            @[simp]
                            theorem TensorProduct.lift.tmul' {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N →ₗ[R] P} (x : M) (y : N) :
                            (TensorProduct.lift f).toAddHom (x ⊗ₜ[R] y) = ↑(f x) y
                            theorem TensorProduct.ext' {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {g : TensorProduct R M N →ₗ[R] P} {h : TensorProduct R M N →ₗ[R] P} (H : ∀ (x : M) (y : N), g (x ⊗ₜ[R] y) = h (x ⊗ₜ[R] y)) :
                            g = h
                            theorem TensorProduct.lift.unique {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N →ₗ[R] P} {g : TensorProduct R M N →ₗ[R] P} (H : ∀ (x : M) (y : N), g (x ⊗ₜ[R] y) = ↑(f x) y) :
                            theorem TensorProduct.lift_mk {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
                            theorem TensorProduct.lift_compr₂ {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] {f : M →ₗ[R] N →ₗ[R] P} (g : P →ₗ[R] Q) :
                            theorem TensorProduct.ext {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {g : TensorProduct R M N →ₗ[R] P} {h : TensorProduct R M N →ₗ[R] P} (H : LinearMap.compr₂ (TensorProduct.mk R M N) g = LinearMap.compr₂ (TensorProduct.mk R M N) h) :
                            g = h

                            This used to be an @[ext] lemma, but it fails very slowly when the ext tactic tries to apply it in some cases, notably when one wants to show equality of two linear maps. The @[ext] attribute is now added locally where it is needed. Using this as the @[ext] lemma instead of TensorProduct.ext' allows ext to apply lemmas specific to M →ₗ _ and N →ₗ _.

                            See note [partially-applied ext lemmas].

                            def TensorProduct.uncurry (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :

                            Linearly constructing a linear map M ⊗ N → P given a bilinear map M → N → P with the property that its composition with the canonical bilinear map M → N → M ⊗ N is the given bilinear map M → N → P.

                            Equations
                            Instances For
                              @[simp]
                              theorem TensorProduct.uncurry_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : M →ₗ[R] N →ₗ[R] P) (m : M) (n : N) :
                              ↑(↑(TensorProduct.uncurry R M N P) f) (m ⊗ₜ[R] n) = ↑(f m) n
                              def TensorProduct.lift.equiv (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :

                              A linear equivalence constructing a linear map M ⊗ N → P given a bilinear map M → N → P with the property that its composition with the canonical bilinear map M → N → M ⊗ N is the given bilinear map M → N → P.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem TensorProduct.lift.equiv_apply (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : M →ₗ[R] N →ₗ[R] P) (m : M) (n : N) :
                                ↑(↑(TensorProduct.lift.equiv R M N P) f) (m ⊗ₜ[R] n) = ↑(f m) n
                                @[simp]
                                theorem TensorProduct.lift.equiv_symm_apply (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : TensorProduct R M N →ₗ[R] P) (m : M) (n : N) :
                                ↑(↑(↑(LinearEquiv.symm (TensorProduct.lift.equiv R M N P)) f) m) n = f (m ⊗ₜ[R] n)
                                def TensorProduct.lcurry (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :

                                Given a linear map M ⊗ N → P, compose it with the canonical bilinear map M → N → M ⊗ N to form a bilinear map M → N → P.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem TensorProduct.lcurry_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : TensorProduct R M N →ₗ[R] P) (m : M) (n : N) :
                                  ↑(↑(↑(TensorProduct.lcurry R M N P) f) m) n = f (m ⊗ₜ[R] n)
                                  def TensorProduct.curry {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : TensorProduct R M N →ₗ[R] P) :

                                  Given a linear map M ⊗ N → P, compose it with the canonical bilinear map M → N → M ⊗ N to form a bilinear map M → N → P.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem TensorProduct.curry_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : TensorProduct R M N →ₗ[R] P) (m : M) (n : N) :
                                    ↑(↑(TensorProduct.curry f) m) n = f (m ⊗ₜ[R] n)
                                    theorem TensorProduct.curry_injective {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :
                                    Function.Injective TensorProduct.curry
                                    theorem TensorProduct.ext_threefold {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] {g : TensorProduct R (TensorProduct R M N) P →ₗ[R] Q} {h : TensorProduct R (TensorProduct R M N) P →ₗ[R] Q} (H : ∀ (x : M) (y : N) (z : P), g ((x ⊗ₜ[R] y) ⊗ₜ[R] z) = h ((x ⊗ₜ[R] y) ⊗ₜ[R] z)) :
                                    g = h
                                    theorem TensorProduct.ext_fourfold {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} {S : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R P] [Module R Q] [Module R S] {g : TensorProduct R (TensorProduct R (TensorProduct R M N) P) Q →ₗ[R] S} {h : TensorProduct R (TensorProduct R (TensorProduct R M N) P) Q →ₗ[R] S} (H : ∀ (w : M) (x : N) (y : P) (z : Q), g (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z) = h (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z)) :
                                    g = h
                                    theorem TensorProduct.ext_fourfold' {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} {S : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R P] [Module R Q] [Module R S] {φ : TensorProduct R (TensorProduct R M N) (TensorProduct R P Q) →ₗ[R] S} {ψ : TensorProduct R (TensorProduct R M N) (TensorProduct R P Q) →ₗ[R] S} (H : ∀ (w : M) (x : N) (y : P) (z : Q), φ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z) = ψ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z)) :
                                    φ = ψ

                                    Two linear maps (M ⊗ N) ⊗ (P ⊗ Q) → S which agree on all elements of the form (m ⊗ₜ n) ⊗ₜ (p ⊗ₜ q) are equal.

                                    def TensorProduct.lid (R : Type u_1) [CommSemiring R] (M : Type u_4) [AddCommMonoid M] [Module R M] :

                                    The base ring is a left identity for the tensor product of modules, up to linear equivalence.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      @[simp]
                                      theorem TensorProduct.lid_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} [AddCommMonoid M] [Module R M] (m : M) (r : R) :
                                      ↑(TensorProduct.lid R M) (r ⊗ₜ[R] m) = r m
                                      @[simp]
                                      theorem TensorProduct.lid_symm_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} [AddCommMonoid M] [Module R M] (m : M) :
                                      def TensorProduct.comm (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :

                                      The tensor product of modules is commutative, up to linear equivalence.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        @[simp]
                                        theorem TensorProduct.comm_tmul (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (m : M) (n : N) :
                                        ↑(TensorProduct.comm R M N) (m ⊗ₜ[R] n) = n ⊗ₜ[R] m
                                        @[simp]
                                        theorem TensorProduct.comm_symm_tmul (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (m : M) (n : N) :
                                        def TensorProduct.rid (R : Type u_1) [CommSemiring R] (M : Type u_4) [AddCommMonoid M] [Module R M] :

                                        The base ring is a right identity for the tensor product of modules, up to linear equivalence.

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem TensorProduct.rid_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} [AddCommMonoid M] [Module R M] (m : M) (r : R) :
                                          ↑(TensorProduct.rid R M) (m ⊗ₜ[R] r) = r m
                                          @[simp]
                                          theorem TensorProduct.rid_symm_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} [AddCommMonoid M] [Module R M] (m : M) :
                                          def TensorProduct.assoc (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :

                                          The associator for tensor product of R-modules, as a linear equivalence.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem TensorProduct.assoc_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (m : M) (n : N) (p : P) :
                                            ↑(TensorProduct.assoc R M N P) ((m ⊗ₜ[R] n) ⊗ₜ[R] p) = m ⊗ₜ[R] n ⊗ₜ[R] p
                                            @[simp]
                                            theorem TensorProduct.assoc_symm_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (m : M) (n : N) (p : P) :
                                            def TensorProduct.map {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :

                                            The tensor product of a pair of linear maps between modules.

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem TensorProduct.map_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M →ₗ[R] P) (g : N →ₗ[R] Q) (m : M) (n : N) :
                                              ↑(TensorProduct.map f g) (m ⊗ₜ[R] n) = f m ⊗ₜ[R] g n
                                              theorem TensorProduct.map_range_eq_span_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                              LinearMap.range (TensorProduct.map f g) = Submodule.span R {t | m n, f m ⊗ₜ[R] g n = t}
                                              def TensorProduct.mapIncl {R : Type u_1} [CommSemiring R] {P : Type u_6} {Q : Type u_7} [AddCommMonoid P] [AddCommMonoid Q] [Module R P] [Module R Q] (p : Submodule R P) (q : Submodule R Q) :
                                              TensorProduct R { x // x p } { x // x q } →ₗ[R] TensorProduct R P Q

                                              Given submodules p ⊆ P and q ⊆ Q, this is the natural map: p ⊗ q → P ⊗ Q.

                                              Equations
                                              Instances For
                                                theorem TensorProduct.map_comp {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] {P' : Type u_9} {Q' : Type u_10} [AddCommMonoid P'] [Module R P'] [AddCommMonoid Q'] [Module R Q'] (f₂ : P →ₗ[R] P') (f₁ : M →ₗ[R] P) (g₂ : Q →ₗ[R] Q') (g₁ : N →ₗ[R] Q) :
                                                theorem TensorProduct.lift_comp_map {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] {Q' : Type u_10} [AddCommMonoid Q'] [Module R Q'] (i : P →ₗ[R] Q →ₗ[R] Q') (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                @[simp]
                                                theorem TensorProduct.map_id {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
                                                TensorProduct.map LinearMap.id LinearMap.id = LinearMap.id
                                                @[simp]
                                                theorem TensorProduct.map_one {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
                                                theorem TensorProduct.map_mul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f₁ : M →ₗ[R] M) (f₂ : M →ₗ[R] M) (g₁ : N →ₗ[R] N) (g₂ : N →ₗ[R] N) :
                                                TensorProduct.map (f₁ * f₂) (g₁ * g₂) = TensorProduct.map f₁ g₁ * TensorProduct.map f₂ g₂
                                                @[simp]
                                                theorem TensorProduct.map_pow {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M →ₗ[R] M) (g : N →ₗ[R] N) (n : ) :
                                                theorem TensorProduct.map_add_left {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f₁ : M →ₗ[R] P) (f₂ : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                theorem TensorProduct.map_add_right {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M →ₗ[R] P) (g₁ : N →ₗ[R] Q) (g₂ : N →ₗ[R] Q) :
                                                theorem TensorProduct.map_smul_left {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (r : R) (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                theorem TensorProduct.map_smul_right {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (r : R) (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                def TensorProduct.mapBilinear (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) (Q : Type u_7) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] :

                                                The tensor product of a pair of linear maps between modules, bilinear in both maps.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  def TensorProduct.lTensorHomToHomLTensor (R : Type u_1) [CommSemiring R] (M : Type u_4) (P : Type u_6) (Q : Type u_7) [AddCommMonoid M] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R P] [Module R Q] :

                                                  The canonical linear map from P ⊗[R] (M →ₗ[R] Q) to (M →ₗ[R] P ⊗[R] Q)

                                                  Equations
                                                  Instances For
                                                    def TensorProduct.rTensorHomToHomRTensor (R : Type u_1) [CommSemiring R] (M : Type u_4) (P : Type u_6) (Q : Type u_7) [AddCommMonoid M] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R P] [Module R Q] :

                                                    The canonical linear map from (M →ₗ[R] P) ⊗[R] Q to (M →ₗ[R] P ⊗[R] Q)

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      def TensorProduct.homTensorHomMap (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) (Q : Type u_7) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] :

                                                      The linear map from (M →ₗ P) ⊗ (N →ₗ Q) to (M ⊗ N →ₗ P ⊗ Q) sending f ⊗ₜ g to the TensorProduct.map f g, the tensor product of the two maps.

                                                      Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem TensorProduct.mapBilinear_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                        ↑(↑(TensorProduct.mapBilinear R M N P Q) f) g = TensorProduct.map f g
                                                        @[simp]
                                                        theorem TensorProduct.lTensorHomToHomLTensor_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R P] [Module R Q] (p : P) (f : M →ₗ[R] Q) (m : M) :
                                                        ↑(↑(TensorProduct.lTensorHomToHomLTensor R M P Q) (p ⊗ₜ[R] f)) m = p ⊗ₜ[R] f m
                                                        @[simp]
                                                        theorem TensorProduct.rTensorHomToHomRTensor_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R P] [Module R Q] (f : M →ₗ[R] P) (q : Q) (m : M) :
                                                        ↑(↑(TensorProduct.rTensorHomToHomRTensor R M P Q) (f ⊗ₜ[R] q)) m = f m ⊗ₜ[R] q
                                                        @[simp]
                                                        theorem TensorProduct.homTensorHomMap_apply {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                        def TensorProduct.congr {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M ≃ₗ[R] P) (g : N ≃ₗ[R] Q) :

                                                        If M and P are linearly equivalent and N and Q are linearly equivalent then M ⊗ N and P ⊗ Q are linearly equivalent.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For
                                                          @[simp]
                                                          theorem TensorProduct.congr_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M ≃ₗ[R] P) (g : N ≃ₗ[R] Q) (m : M) (n : N) :
                                                          ↑(TensorProduct.congr f g) (m ⊗ₜ[R] n) = f m ⊗ₜ[R] g n
                                                          @[simp]
                                                          theorem TensorProduct.congr_symm_tmul {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M ≃ₗ[R] P) (g : N ≃ₗ[R] Q) (p : P) (q : Q) :
                                                          def TensorProduct.leftComm (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :

                                                          A tensor product analogue of mul_left_comm.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For
                                                            @[simp]
                                                            theorem TensorProduct.leftComm_tmul (R : Type u_1) [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (m : M) (n : N) (p : P) :
                                                            @[simp]
                                                            theorem TensorProduct.leftComm_symm_tmul (R : Type u_1) [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (m : M) (n : N) (p : P) :
                                                            def TensorProduct.tensorTensorTensorComm (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) (Q : Type u_7) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] :

                                                            This special case is worth defining explicitly since it is useful for defining multiplication on tensor products of modules carrying multiplications (e.g., associative rings, Lie rings, ...).

                                                            E.g., suppose M = P and N = Q and that M and N carry bilinear multiplications: M ⊗ M → M and N ⊗ N → N. Using map, we can define (M ⊗ M) ⊗ (N ⊗ N) → M ⊗ N which, when combined with this definition, yields a bilinear multiplication on M ⊗ N: (M ⊗ N) ⊗ (M ⊗ N) → M ⊗ N. In particular we could use this to define the multiplication in the TensorProduct.semiring instance (currently defined "by hand" using TensorProduct.mul).

                                                            See also mul_mul_mul_comm.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              @[simp]
                                                              theorem TensorProduct.tensorTensorTensorComm_tmul (R : Type u_1) [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (m : M) (n : N) (p : P) (q : Q) :
                                                              def TensorProduct.tensorTensorTensorAssoc (R : Type u_1) [CommSemiring R] (M : Type u_4) (N : Type u_5) (P : Type u_6) (Q : Type u_7) [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] :

                                                              This special case is useful for describing the interplay between dualTensorHomEquiv and composition of linear maps.

                                                              E.g., composition of linear maps gives a map (M → N) ⊗ (N → P) → (M → P), and applying dual_tensor_hom_equiv.symm to the three hom-modules gives a map (M.dual ⊗ N) ⊗ (N.dual ⊗ P) → (M.dual ⊗ P), which agrees with the application of contractRight on N ⊗ N.dual after the suitable rebracketting.

                                                              Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem TensorProduct.tensorTensorTensorAssoc_tmul (R : Type u_1) [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (m : M) (n : N) (p : P) (q : Q) :
                                                                @[simp]
                                                                theorem TensorProduct.tensorTensorTensorAssoc_symm_tmul (R : Type u_1) [CommSemiring R] {M : Type u_4} {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (m : M) (n : N) (p : P) (q : Q) :
                                                                def LinearMap.lTensor {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) :

                                                                lTensor M f : M ⊗ N →ₗ M ⊗ P is the natural linear map induced by f : N →ₗ P.

                                                                Equations
                                                                Instances For
                                                                  def LinearMap.rTensor {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) :

                                                                  rTensor f M : N₁ ⊗ M →ₗ N₂ ⊗ M is the natural linear map induced by f : N₁ →ₗ N₂.

                                                                  Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem LinearMap.lTensor_tmul {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) (m : M) (n : N) :
                                                                    ↑(LinearMap.lTensor M f) (m ⊗ₜ[R] n) = m ⊗ₜ[R] f n
                                                                    @[simp]
                                                                    theorem LinearMap.rTensor_tmul {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) (m : M) (n : N) :
                                                                    ↑(LinearMap.rTensor M f) (n ⊗ₜ[R] m) = f n ⊗ₜ[R] m
                                                                    def LinearMap.lTensorHom {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :

                                                                    lTensorHom M is the natural linear map that sends a linear map f : N →ₗ P to M ⊗ f.

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For
                                                                      def LinearMap.rTensorHom {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :

                                                                      rTensorHom M is the natural linear map that sends a linear map f : N →ₗ P to M ⊗ f.

                                                                      Equations
                                                                      • One or more equations did not get rendered due to their size.
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem LinearMap.coe_lTensorHom {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :
                                                                        @[simp]
                                                                        theorem LinearMap.coe_rTensorHom {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :
                                                                        @[simp]
                                                                        theorem LinearMap.lTensor_add {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) (g : N →ₗ[R] P) :
                                                                        @[simp]
                                                                        theorem LinearMap.rTensor_add {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) (g : N →ₗ[R] P) :
                                                                        @[simp]
                                                                        theorem LinearMap.lTensor_zero {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :
                                                                        @[simp]
                                                                        theorem LinearMap.rTensor_zero {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] :
                                                                        @[simp]
                                                                        theorem LinearMap.lTensor_smul {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (r : R) (f : N →ₗ[R] P) :
                                                                        @[simp]
                                                                        theorem LinearMap.rTensor_smul {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (r : R) (f : N →ₗ[R] P) :
                                                                        theorem LinearMap.lTensor_comp {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (g : P →ₗ[R] Q) (f : N →ₗ[R] P) :
                                                                        theorem LinearMap.lTensor_comp_apply {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (g : P →ₗ[R] Q) (f : N →ₗ[R] P) (x : TensorProduct R M N) :
                                                                        theorem LinearMap.rTensor_comp {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (g : P →ₗ[R] Q) (f : N →ₗ[R] P) :
                                                                        theorem LinearMap.rTensor_comp_apply {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (g : P →ₗ[R] Q) (f : N →ₗ[R] P) (x : TensorProduct R N M) :
                                                                        theorem LinearMap.lTensor_mul {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : Module.End R N) (g : Module.End R N) :
                                                                        theorem LinearMap.rTensor_mul {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : Module.End R N) (g : Module.End R N) :
                                                                        @[simp]
                                                                        theorem LinearMap.lTensor_id {R : Type u_1} [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
                                                                        LinearMap.lTensor M LinearMap.id = LinearMap.id
                                                                        theorem LinearMap.lTensor_id_apply {R : Type u_1} [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (x : TensorProduct R M N) :
                                                                        ↑(LinearMap.lTensor M LinearMap.id) x = x
                                                                        @[simp]
                                                                        theorem LinearMap.rTensor_id {R : Type u_1} [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
                                                                        LinearMap.rTensor M LinearMap.id = LinearMap.id
                                                                        theorem LinearMap.rTensor_id_apply {R : Type u_1} [CommSemiring R] (M : Type u_4) (N : Type u_5) [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (x : TensorProduct R N M) :
                                                                        ↑(LinearMap.rTensor M LinearMap.id) x = x
                                                                        @[simp]
                                                                        theorem LinearMap.lTensor_comp_rTensor {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                                        @[simp]
                                                                        theorem LinearMap.rTensor_comp_lTensor {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                                        @[simp]
                                                                        theorem LinearMap.map_comp_rTensor {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} {S : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R P] [Module R Q] [Module R S] (f : M →ₗ[R] P) (g : N →ₗ[R] Q) (f' : S →ₗ[R] M) :
                                                                        @[simp]
                                                                        theorem LinearMap.map_comp_lTensor {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} {S : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R P] [Module R Q] [Module R S] (f : M →ₗ[R] P) (g : N →ₗ[R] Q) (g' : S →ₗ[R] N) :
                                                                        @[simp]
                                                                        theorem LinearMap.rTensor_comp_map {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} {S : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R P] [Module R Q] [Module R S] (f' : P →ₗ[R] S) (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                                        @[simp]
                                                                        theorem LinearMap.lTensor_comp_map {R : Type u_1} [CommSemiring R] (M : Type u_4) {N : Type u_5} {P : Type u_6} {Q : Type u_7} {S : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R P] [Module R Q] [Module R S] (g' : Q →ₗ[R] S) (f : M →ₗ[R] P) (g : N →ₗ[R] Q) :
                                                                        @[simp]
                                                                        theorem LinearMap.rTensor_pow {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M →ₗ[R] M) (n : ) :
                                                                        @[simp]
                                                                        theorem LinearMap.lTensor_pow {R : Type u_1} [CommSemiring R] {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : N →ₗ[R] N) (n : ) :
                                                                        def TensorProduct.Neg.aux (R : Type u_1) [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] :

                                                                        Auxiliary function to defining negation multiplication on tensor product.

                                                                        Equations
                                                                        Instances For
                                                                          theorem TensorProduct.Neg.aux_of {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (m : M) (n : N) :
                                                                          instance TensorProduct.neg {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] :
                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          theorem TensorProduct.add_left_neg {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (x : TensorProduct R M N) :
                                                                          -x + x = 0
                                                                          instance TensorProduct.addCommGroup {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] :
                                                                          Equations
                                                                          theorem TensorProduct.neg_tmul {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (m : M) (n : N) :
                                                                          (-m) ⊗ₜ[R] n = -m ⊗ₜ[R] n
                                                                          theorem TensorProduct.tmul_neg {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (m : M) (n : N) :
                                                                          m ⊗ₜ[R] (-n) = -m ⊗ₜ[R] n
                                                                          theorem TensorProduct.tmul_sub {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (m : M) (n₁ : N) (n₂ : N) :
                                                                          m ⊗ₜ[R] (n₁ - n₂) = m ⊗ₜ[R] n₁ - m ⊗ₜ[R] n₂
                                                                          theorem TensorProduct.sub_tmul {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (m₁ : M) (m₂ : M) (n : N) :
                                                                          (m₁ - m₂) ⊗ₜ[R] n = m₁ ⊗ₜ[R] n - m₂ ⊗ₜ[R] n

                                                                          While the tensor product will automatically inherit a ℤ-module structure from AddCommGroup.intModule, that structure won't be compatible with lemmas like tmul_smul unless we use a ℤ-Module instance provided by TensorProduct.left_module.

                                                                          When R is a Ring we get the required TensorProduct.compatible_smul instance through IsScalarTower, but when it is only a Semiring we need to build it from scratch. The instance diamond in compatible_smul doesn't matter because it's in Prop.

                                                                          Equations
                                                                          @[simp]
                                                                          theorem LinearMap.lTensor_sub {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} {P : Type u_4} [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) (g : N →ₗ[R] P) :
                                                                          @[simp]
                                                                          theorem LinearMap.rTensor_sub {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} {P : Type u_4} [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) (g : N →ₗ[R] P) :
                                                                          @[simp]
                                                                          theorem LinearMap.lTensor_neg {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} {P : Type u_4} [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) :
                                                                          @[simp]
                                                                          theorem LinearMap.rTensor_neg {R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} {P : Type u_4} [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) :