Results on finitely supported functions. #
The tensor product of ι →₀ M
and κ →₀ N
is linearly equivalent to (ι × κ) →₀ (M ⊗ N)
.
noncomputable def
finsuppTensorFinsupp
(R : Type u_1)
(M : Type u_2)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
:
TensorProduct R (ι →₀ M) (κ →₀ N) ≃ₗ[R] ι × κ →₀ TensorProduct R M N
The tensor product of ι →₀ M
and κ →₀ N
is linearly equivalent to (ι × κ) →₀ (M ⊗ N)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
finsuppTensorFinsupp_single
(R : Type u_1)
(M : Type u_2)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(i : ι)
(m : M)
(k : κ)
(n : N)
:
@[simp]
theorem
finsuppTensorFinsupp_apply
(R : Type u_1)
(M : Type u_2)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(f : ι →₀ M)
(g : κ →₀ N)
(i : ι)
(k : κ)
:
@[simp]
theorem
finsuppTensorFinsupp_symm_single
(R : Type u_1)
(M : Type u_2)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(i : ι × κ)
(m : M)
(n : N)
:
(↑(LinearEquiv.symm (finsuppTensorFinsupp R M N ι κ)) fun₀ | i => m ⊗ₜ[R] n) = (fun₀ | i.fst => m) ⊗ₜ[R] fun₀ | i.snd => n
A variant of finsuppTensorFinsupp
where both modules are the ground ring.
Equations
- finsuppTensorFinsupp' S α β = LinearEquiv.trans (finsuppTensorFinsupp S S S α β) (Finsupp.lcongr (Equiv.refl (α × β)) (TensorProduct.lid S S))