Documentation

Mathlib.GroupTheory.Subsemigroup.Center

Centers of magmas and semigroups #

Main definitions #

We provide Submonoid.center, AddSubmonoid.center, Subgroup.center, AddSubgroup.center, Subsemiring.center, and Subring.center in other files.

def Set.addCenter (M : Type u_1) [Add M] :
Set M

The center of an additive magma.

Equations
Instances For
    def Set.center (M : Type u_1) [Mul M] :
    Set M

    The center of a magma.

    Equations
    Instances For
      theorem Set.mem_addCenter_iff (M : Type u_1) [Add M] {z : M} :
      z Set.addCenter M ∀ (g : M), g + z = z + g
      theorem Set.mem_center_iff (M : Type u_1) [Mul M] {z : M} :
      z Set.center M ∀ (g : M), g * z = z * g
      instance Set.decidableMemCenter (M : Type u_1) [Mul M] [(a : M) → Decidable (∀ (b : M), b * a = a * b)] :
      Equations
      @[simp]
      theorem Set.one_mem_center (M : Type u_1) [MulOneClass M] :
      @[simp]
      @[simp]
      theorem Set.natCast_mem_center (M : Type u_1) [NonAssocSemiring M] (n : ) :
      @[simp]
      theorem Set.intCast_mem_center (M : Type u_1) [NonAssocRing M] (n : ) :
      @[simp]
      theorem Set.add_mem_addCenter {M : Type u_1} [AddSemigroup M] {a : M} {b : M} (ha : a Set.addCenter M) (hb : b Set.addCenter M) :
      @[simp]
      theorem Set.mul_mem_center {M : Type u_1} [Semigroup M] {a : M} {b : M} (ha : a Set.center M) (hb : b Set.center M) :
      @[simp]
      theorem Set.neg_mem_addCenter {M : Type u_1} [AddGroup M] {a : M} (ha : a Set.addCenter M) :
      @[simp]
      theorem Set.inv_mem_center {M : Type u_1} [Group M] {a : M} (ha : a Set.center M) :
      @[simp]
      theorem Set.add_mem_center {M : Type u_1} [Distrib M] {a : M} {b : M} (ha : a Set.center M) (hb : b Set.center M) :
      @[simp]
      theorem Set.neg_mem_center {M : Type u_1} [NonUnitalNonAssocRing M] {a : M} (ha : a Set.center M) :

      In a group with zero, the center of the units is the preimage of the center.

      @[simp]
      theorem Set.units_inv_mem_center {M : Type u_1} [Monoid M] {a : Mˣ} (ha : a Set.center M) :
      @[simp]
      theorem Set.invOf_mem_center {M : Type u_1} [Monoid M] {a : M} [Invertible a] (ha : a Set.center M) :
      @[simp]
      theorem Set.inv_mem_center₀ {M : Type u_1} [GroupWithZero M] {a : M} (ha : a Set.center M) :
      @[simp]
      theorem Set.sub_mem_addCenter {M : Type u_1} [AddGroup M] {a : M} {b : M} (ha : a Set.addCenter M) (hb : b Set.addCenter M) :
      @[simp]
      theorem Set.div_mem_center {M : Type u_1} [Group M] {a : M} {b : M} (ha : a Set.center M) (hb : b Set.center M) :
      @[simp]
      theorem Set.div_mem_center₀ {M : Type u_1} [GroupWithZero M] {a : M} {b : M} (ha : a Set.center M) (hb : b Set.center M) :
      @[simp]
      theorem Set.addCenter_eq_univ (M : Type u_1) [AddCommSemigroup M] :
      Set.addCenter M = Set.univ
      @[simp]
      theorem Set.center_eq_univ (M : Type u_1) [CommSemigroup M] :
      Set.center M = Set.univ

      The center of a semigroup M is the set of elements that commute with everything in M

      Equations
      Instances For

        The center of a semigroup M is the set of elements that commute with everything in M

        Equations
        Instances For
          theorem AddSubsemigroup.mem_center_iff {M : Type u_1} [AddSemigroup M] {z : M} :
          z AddSubsemigroup.center M ∀ (g : M), g + z = z + g
          theorem Subsemigroup.mem_center_iff {M : Type u_1} [Semigroup M] {z : M} :
          z Subsemigroup.center M ∀ (g : M), g * z = z * g
          instance AddSubsemigroup.decidableMemCenter {M : Type u_1} [AddSemigroup M] (a : M) [Decidable (∀ (b : M), b + a = a + b)] :
          Equations
          instance Subsemigroup.decidableMemCenter {M : Type u_1} [Semigroup M] (a : M) [Decidable (∀ (b : M), b * a = a * b)] :
          Equations
          theorem AddSubsemigroup.center.addCommSemigroup.proof_2 {M : Type u_1} [AddSemigroup M] (a : { x // x AddSubsemigroup.center M }) (b : { x // x AddSubsemigroup.center M }) (c : { x // x AddSubsemigroup.center M }) :
          a + b + c = a + (b + c)

          The center of an additive semigroup is commutative.

          Equations
          • One or more equations did not get rendered due to their size.

          The center of a semigroup is commutative.

          Equations