The subgroup generated by an element.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Subgroup.coe_zpowers
{G : Type u_1}
[Group G]
(g : G)
:
↑(Subgroup.zpowers g) = Set.range fun x => g ^ x
@[simp]
theorem
Subgroup.range_zpowersHom
{G : Type u_1}
[Group G]
(g : G)
:
MonoidHom.range (↑(zpowersHom G) g) = Subgroup.zpowers g
theorem
Subgroup.mem_zpowers_iff
{G : Type u_1}
[Group G]
{g : G}
{h : G}
:
h ∈ Subgroup.zpowers g ↔ ∃ k, g ^ k = h
@[simp]
theorem
Subgroup.zpow_mem_zpowers
{G : Type u_1}
[Group G]
(g : G)
(k : ℤ)
:
g ^ k ∈ Subgroup.zpowers g
@[simp]
theorem
Subgroup.npow_mem_zpowers
{G : Type u_1}
[Group G]
(g : G)
(k : ℕ)
:
g ^ k ∈ Subgroup.zpowers g
@[simp]
theorem
Subgroup.forall_zpowers
{G : Type u_1}
[Group G]
{x : G}
{p : { x // x ∈ Subgroup.zpowers x } → Prop}
:
theorem
Subgroup.forall_mem_zpowers
{G : Type u_1}
[Group G]
{x : G}
{p : G → Prop}
:
((g : G) → g ∈ Subgroup.zpowers x → p g) ↔ (m : ℤ) → p (x ^ m)
theorem
Subgroup.exists_mem_zpowers
{G : Type u_1}
[Group G]
{x : G}
{p : G → Prop}
:
(∃ g, g ∈ Subgroup.zpowers x ∧ p g) ↔ ∃ m, p (x ^ m)
instance
Subgroup.instCountableSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupZpowers
{G : Type u_1}
[Group G]
(a : G)
:
Countable { x // x ∈ Subgroup.zpowers a }
The subgroup generated by an element.
Equations
- AddSubgroup.zmultiples a = AddSubgroup.copy (AddMonoidHom.range (↑(zmultiplesHom A) a)) (Set.range fun x => x • a) (_ : (Set.range fun x => x • a) = Set.range fun x => x • a)
Instances For
@[simp]
theorem
AddSubgroup.range_zmultiplesHom
{A : Type u_2}
[AddGroup A]
(a : A)
:
AddMonoidHom.range (↑(zmultiplesHom A) a) = AddSubgroup.zmultiples a
@[simp]
theorem
AddSubgroup.coe_zmultiples
{G : Type u_1}
[AddGroup G]
(g : G)
:
↑(AddSubgroup.zmultiples g) = Set.range fun x => x • g
theorem
AddSubgroup.mem_zmultiples_iff
{G : Type u_1}
[AddGroup G]
{g : G}
{h : G}
:
h ∈ AddSubgroup.zmultiples g ↔ ∃ k, k • g = h
@[simp]
theorem
AddSubgroup.zsmul_mem_zmultiples
{G : Type u_1}
[AddGroup G]
(g : G)
(k : ℤ)
:
k • g ∈ AddSubgroup.zmultiples g
@[simp]
theorem
AddSubgroup.nsmul_mem_zmultiples
{G : Type u_1}
[AddGroup G]
(g : G)
(k : ℕ)
:
k • g ∈ AddSubgroup.zmultiples g
@[simp]
theorem
AddSubgroup.forall_zmultiples
{G : Type u_1}
[AddGroup G]
{x : G}
{p : { x // x ∈ AddSubgroup.zmultiples x } → Prop}
:
theorem
AddSubgroup.forall_mem_zmultiples
{G : Type u_1}
[AddGroup G]
{x : G}
{p : G → Prop}
:
((g : G) → g ∈ AddSubgroup.zmultiples x → p g) ↔ (m : ℤ) → p (m • x)
theorem
AddSubgroup.exists_mem_zmultiples
{G : Type u_1}
[AddGroup G]
{x : G}
{p : G → Prop}
:
(∃ g, g ∈ AddSubgroup.zmultiples x ∧ p g) ↔ ∃ m, p (m • x)
instance
AddSubgroup.instCountableSubtypeMemAddSubgroupInstMembershipInstSetLikeAddSubgroupZmultiples
{A : Type u_2}
[AddGroup A]
(a : A)
:
Countable { x // x ∈ AddSubgroup.zmultiples a }
@[simp]
theorem
AddSubgroup.int_cast_mul_mem_zmultiples
{R : Type u_4}
[Ring R]
(r : R)
(k : ℤ)
:
↑k * r ∈ AddSubgroup.zmultiples r
@[simp]
theorem
AddSubgroup.int_cast_mem_zmultiples_one
{R : Type u_4}
[Ring R]
(k : ℤ)
:
↑k ∈ AddSubgroup.zmultiples 1
@[simp]
@[simp]
theorem
AddMonoidHom.map_zmultiples
{G : Type u_1}
[AddGroup G]
{N : Type u_3}
[AddGroup N]
(f : G →+ N)
(x : G)
:
AddSubgroup.map f (AddSubgroup.zmultiples x) = AddSubgroup.zmultiples (↑f x)
@[simp]
theorem
MonoidHom.map_zpowers
{G : Type u_1}
[Group G]
{N : Type u_3}
[Group N]
(f : G →* N)
(x : G)
:
Subgroup.map f (Subgroup.zpowers x) = Subgroup.zpowers (↑f x)
theorem
ofMul_image_zpowers_eq_zmultiples_ofMul
{G : Type u_1}
[Group G]
{x : G}
:
↑Additive.ofMul '' ↑(Subgroup.zpowers x) = ↑(AddSubgroup.zmultiples (↑Additive.ofMul x))
theorem
ofAdd_image_zmultiples_eq_zpowers_ofAdd
{A : Type u_2}
[AddGroup A]
{x : A}
:
↑Multiplicative.ofAdd '' ↑(AddSubgroup.zmultiples x) = ↑(Subgroup.zpowers (↑Multiplicative.ofAdd x))
abbrev
AddSubgroup.zmultiples_isCommutative.match_1
{G : Type u_1}
[AddGroup G]
(g : G)
(motive : { x // x ∈ AddSubgroup.zmultiples g } → Prop)
:
Equations
- AddSubgroup.zmultiples_isCommutative.match_1 g motive x h_1 = Subtype.casesOn x fun val property => Exists.casesOn property fun w h => h_1 val w h
Instances For
@[simp]
theorem
AddSubgroup.zmultiples_le
{G : Type u_1}
[AddGroup G]
{g : G}
{H : AddSubgroup G}
:
AddSubgroup.zmultiples g ≤ H ↔ g ∈ H
@[simp]
theorem
Subgroup.zpowers_le
{G : Type u_1}
[Group G]
{g : G}
{H : Subgroup G}
:
Subgroup.zpowers g ≤ H ↔ g ∈ H
theorem
Subgroup.zpowers_le_of_mem
{G : Type u_1}
[Group G]
{g : G}
{H : Subgroup G}
:
g ∈ H → Subgroup.zpowers g ≤ H
Alias of the reverse direction of Subgroup.zpowers_le
.
theorem
AddSubgroup.zmultiples_le_of_mem
{G : Type u_1}
[AddGroup G]
{g : G}
{H : AddSubgroup G}
:
g ∈ H → AddSubgroup.zmultiples g ≤ H
Alias of the reverse direction of AddSubgroup.zmultiples_le
.
@[simp]
theorem
AddSubgroup.zmultiples_eq_bot
{G : Type u_1}
[AddGroup G]
{g : G}
:
AddSubgroup.zmultiples g = ⊥ ↔ g = 0
@[simp]
theorem
AddSubgroup.zmultiples_ne_bot
{G : Type u_1}
[AddGroup G]
{g : G}
:
AddSubgroup.zmultiples g ≠ ⊥ ↔ g ≠ 0
@[simp]
theorem
AddSubgroup.centralizer_closure
{G : Type u_1}
[AddGroup G]
(S : Set G)
:
AddSubgroup.centralizer ↑(AddSubgroup.closure S) = ⨅ (g : G) (_ : g ∈ S), AddSubgroup.centralizer ↑(AddSubgroup.zmultiples g)
theorem
Subgroup.centralizer_closure
{G : Type u_1}
[Group G]
(S : Set G)
:
Subgroup.centralizer ↑(Subgroup.closure S) = ⨅ (g : G) (_ : g ∈ S), Subgroup.centralizer ↑(Subgroup.zpowers g)
theorem
AddSubgroup.center_eq_iInf
{G : Type u_1}
[AddGroup G]
(S : Set G)
(hS : AddSubgroup.closure S = ⊤)
:
AddSubgroup.center G = ⨅ (g : G) (_ : g ∈ S), AddSubgroup.centralizer ↑(AddSubgroup.zmultiples g)
theorem
Subgroup.center_eq_iInf
{G : Type u_1}
[Group G]
(S : Set G)
(hS : Subgroup.closure S = ⊤)
:
Subgroup.center G = ⨅ (g : G) (_ : g ∈ S), Subgroup.centralizer ↑(Subgroup.zpowers g)
theorem
AddSubgroup.center_eq_infi'
{G : Type u_1}
[AddGroup G]
(S : Set G)
(hS : AddSubgroup.closure S = ⊤)
:
AddSubgroup.center G = ⨅ (g : ↑S), AddSubgroup.centralizer ↑(AddSubgroup.zmultiples ↑g)
theorem
Subgroup.center_eq_infi'
{G : Type u_1}
[Group G]
(S : Set G)
(hS : Subgroup.closure S = ⊤)
:
Subgroup.center G = ⨅ (g : ↑S), Subgroup.centralizer ↑(Subgroup.zpowers ↑g)