Documentation

Mathlib.GroupTheory.Subgroup.MulOpposite

Mul-opposite subgroups #

Tags #

subgroup, subgroups

theorem AddSubgroup.op.proof_1 {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
∀ {a b : Gᵃᵒᵖ}, a AddOpposite.unop ⁻¹' Hb AddOpposite.unop ⁻¹' HAddOpposite.unop b + AddOpposite.unop a H

Pull an additive subgroup back to an opposite additive subgroup along AddOpposite.unop

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem AddSubgroup.op_coe {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
    ↑(AddSubgroup.op H) = AddOpposite.unop ⁻¹' H
    @[simp]
    theorem Subgroup.op_coe {G : Type u_1} [Group G] (H : Subgroup G) :
    ↑(Subgroup.op H) = MulOpposite.unop ⁻¹' H
    def Subgroup.op {G : Type u_1} [Group G] (H : Subgroup G) :

    Pull a subgroup back to an opposite subgroup along MulOpposite.unop

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem AddSubgroup.unop.proof_1 {G : Type u_1} [AddGroup G] (H : AddSubgroup Gᵃᵒᵖ) :
      ∀ {a b : G}, a AddOpposite.op ⁻¹' Hb AddOpposite.op ⁻¹' H{ unop' := b } + { unop' := a } H

      Pull an opposite additive subgroup back to an additive subgroup along AddOpposite.op

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem AddSubgroup.unop_coe {G : Type u_1} [AddGroup G] (H : AddSubgroup Gᵃᵒᵖ) :
        ↑(AddSubgroup.unop H) = AddOpposite.op ⁻¹' H
        @[simp]
        theorem Subgroup.unop_coe {G : Type u_1} [Group G] (H : Subgroup Gᵐᵒᵖ) :
        ↑(Subgroup.unop H) = MulOpposite.op ⁻¹' H
        def Subgroup.unop {G : Type u_1} [Group G] (H : Subgroup Gᵐᵒᵖ) :

        Pull an opposite subgroup back to a subgroup along MulOpposite.op

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem AddSubgroup.op_toAddSubmonoid {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
          (AddSubgroup.op H).toAddSubmonoid = AddSubmonoid.op H.toAddSubmonoid
          @[simp]
          theorem Subgroup.op_toSubmonoid {G : Type u_1} [Group G] (H : Subgroup G) :
          (Subgroup.op H).toSubmonoid = Submonoid.op H.toSubmonoid
          @[simp]
          theorem AddSubgroup.unop_toAddSubmonoid {G : Type u_1} [AddGroup G] (H : AddSubgroup Gᵃᵒᵖ) :
          (AddSubgroup.unop H).toAddSubmonoid = AddSubmonoid.unop H.toAddSubmonoid
          @[simp]
          theorem Subgroup.unop_toSubmonoid {G : Type u_1} [Group G] (H : Subgroup Gᵐᵒᵖ) :
          (Subgroup.unop H).toSubmonoid = Submonoid.unop H.toSubmonoid

          An additive subgroup H of G determines an additive subgroup H.op of the opposite additive group Gᵃᵒᵖ.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem AddSubgroup.opEquiv_symm_apply {G : Type u_1} [AddGroup G] (H : AddSubgroup Gᵃᵒᵖ) :
            AddSubgroup.opEquiv.symm H = AddSubgroup.unop H
            @[simp]
            theorem Subgroup.opEquiv_symm_apply {G : Type u_1} [Group G] (H : Subgroup Gᵐᵒᵖ) :
            Subgroup.opEquiv.symm H = Subgroup.unop H
            @[simp]
            theorem AddSubgroup.opEquiv_apply {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
            AddSubgroup.opEquiv H = AddSubgroup.op H
            @[simp]
            theorem Subgroup.opEquiv_apply {G : Type u_1} [Group G] (H : Subgroup G) :
            Subgroup.opEquiv H = Subgroup.op H

            A subgroup H of G determines a subgroup H.op of the opposite group Gᵐᵒᵖ.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem AddSubgroup.equivOp.proof_1 {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              ∀ (x : G), x H x H
              def AddSubgroup.equivOp {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              { x // x H } { x // x AddSubgroup.op H }

              Bijection between an additive subgroup H and its opposite.

              Equations
              Instances For
                @[simp]
                theorem AddSubgroup.equivOp_apply_coe {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (a : { a // (fun x => x H) a }) :
                @[simp]
                theorem Subgroup.equivOp_symm_apply_coe {G : Type u_1} [Group G] (H : Subgroup G) (b : { b // (fun x => x Subgroup.op H) b }) :
                ↑((Subgroup.equivOp H).symm b) = MulOpposite.unop b
                @[simp]
                theorem AddSubgroup.equivOp_symm_apply_coe {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (b : { b // (fun x => x AddSubgroup.op H) b }) :
                ↑((AddSubgroup.equivOp H).symm b) = AddOpposite.unop b
                @[simp]
                theorem Subgroup.equivOp_apply_coe {G : Type u_1} [Group G] (H : Subgroup G) (a : { a // (fun x => x H) a }) :
                ↑(↑(Subgroup.equivOp H) a) = MulOpposite.op a
                def Subgroup.equivOp {G : Type u_1} [Group G] (H : Subgroup G) :
                { x // x H } { x // x Subgroup.op H }

                Bijection between a subgroup H and its opposite.

                Equations
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  theorem AddSubgroup.vadd_opposite_add {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (x : G) (g : G) (h : { x // x AddSubgroup.op H }) :
                  h +ᵥ (g + x) = g + (h +ᵥ x)
                  theorem Subgroup.smul_opposite_mul {G : Type u_1} [Group G] {H : Subgroup G} (x : G) (g : G) (h : { x // x Subgroup.op H }) :
                  h (g * x) = g * h x