Actions by Subgroup
s #
These are just copies of the definitions about Submonoid
starting from Submonoid.mulAction
.
Tags #
subgroup, subgroups
instance
AddSubgroup.instAddActionSubtypeMemAddSubgroupInstMembershipInstSetLikeAddSubgroupToAddMonoidToAddMonoidToSubNegAddMonoidToAddSubmonoid
{G : Type u_1}
[AddGroup G]
{α : Type u_2}
[AddAction G α]
(S : AddSubgroup G)
:
The additive action by an add_subgroup is the action by the underlying AddGroup
.
Equations
- One or more equations did not get rendered due to their size.
instance
Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid
{G : Type u_1}
[Group G]
{α : Type u_2}
[MulAction G α]
(S : Subgroup G)
:
The action by a subgroup is the action by the underlying group.
Equations
- Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid S = inferInstanceAs (MulAction { x // x ∈ S.toSubmonoid } α)
theorem
AddSubgroup.vaddCommClass_left.proof_1
{G : Type u_1}
[AddGroup G]
{α : Type u_2}
{β : Type u_3}
[AddAction G β]
[VAdd α β]
[VAddCommClass G α β]
(S : AddSubgroup G)
:
VAddCommClass { x // x ∈ S.toAddSubmonoid } α β
instance
AddSubgroup.vaddCommClass_left
{G : Type u_1}
[AddGroup G]
{α : Type u_2}
{β : Type u_3}
[AddAction G β]
[VAdd α β]
[VAddCommClass G α β]
(S : AddSubgroup G)
:
VAddCommClass { x // x ∈ S } α β
instance
Subgroup.smulCommClass_left
{G : Type u_1}
[Group G]
{α : Type u_2}
{β : Type u_3}
[MulAction G β]
[SMul α β]
[SMulCommClass G α β]
(S : Subgroup G)
:
SMulCommClass { x // x ∈ S } α β
instance
AddSubgroup.vaddCommClass_right
{G : Type u_1}
[AddGroup G]
{α : Type u_2}
{β : Type u_3}
[VAdd α β]
[AddAction G β]
[VAddCommClass α G β]
(S : AddSubgroup G)
:
VAddCommClass α { x // x ∈ S } β
theorem
AddSubgroup.vaddCommClass_right.proof_1
{G : Type u_1}
[AddGroup G]
{α : Type u_2}
{β : Type u_3}
[VAdd α β]
[AddAction G β]
[VAddCommClass α G β]
(S : AddSubgroup G)
:
VAddCommClass α { x // x ∈ S.toAddSubmonoid } β
instance
Subgroup.smulCommClass_right
{G : Type u_1}
[Group G]
{α : Type u_2}
{β : Type u_3}
[SMul α β]
[MulAction G β]
[SMulCommClass α G β]
(S : Subgroup G)
:
SMulCommClass α { x // x ∈ S } β
instance
Subgroup.instIsScalarTowerSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupSmulToMulOneClassToMonoidToDivInvMonoidToSMulToSubmonoidSmulToSMul
{G : Type u_1}
[Group G]
{α : Type u_2}
{β : Type u_3}
[SMul α β]
[MulAction G α]
[MulAction G β]
[IsScalarTower G α β]
(S : Subgroup G)
:
IsScalarTower { x // x ∈ S } α β
Note that this provides IsScalarTower S G G
which is needed by smul_mul_assoc
.
Equations
- One or more equations did not get rendered due to their size.
instance
Subgroup.instFaithfulSMulSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupSmulToMulOneClassToMonoidToDivInvMonoidToSMulToSubmonoid
{G : Type u_1}
[Group G]
{α : Type u_2}
[MulAction G α]
[FaithfulSMul G α]
(S : Subgroup G)
:
FaithfulSMul { x // x ∈ S } α
Equations
- One or more equations did not get rendered due to their size.
instance
Subgroup.instDistribMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid
{G : Type u_1}
[Group G]
{α : Type u_2}
[AddMonoid α]
[DistribMulAction G α]
(S : Subgroup G)
:
DistribMulAction { x // x ∈ S } α
The action by a subgroup is the action by the underlying group.
Equations
instance
Subgroup.instMulDistribMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid
{G : Type u_1}
[Group G]
{α : Type u_2}
[Monoid α]
[MulDistribMulAction G α]
(S : Subgroup G)
:
MulDistribMulAction { x // x ∈ S } α
The action by a subgroup is the action by the underlying group.
Equations
- One or more equations did not get rendered due to their size.
instance
Subgroup.center.smulCommClass_left
{G : Type u_1}
[Group G]
:
SMulCommClass { x // x ∈ Subgroup.center G } G G
The center of a group acts commutatively on that group.
instance
Subgroup.center.smulCommClass_right
{G : Type u_1}
[Group G]
:
SMulCommClass G { x // x ∈ Subgroup.center G } G
The center of a group acts commutatively on that group.