Documentation

Mathlib.FieldTheory.Perfect

Perfect fields and rings #

In this file we define perfect fields, together with a generalisation to (commutative) rings in prime characteristic.

Main definitions / statements: #

class PerfectRing (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] :

A perfect ring of characteristic p (prime) in the sense of Serre.

NB: This is not related to the concept with the same name introduced by Bass (related to projective covers of modules).

Instances
    theorem PerfectRing.ofSurjective (R : Type u_1) (p : ) [CommRing R] [Fact (Nat.Prime p)] [CharP R p] [IsReduced R] (h : Function.Surjective ↑(frobenius R p)) :

    For a reduced ring, surjectivity of the Frobenius map is a sufficient condition for perfection.

    @[simp]
    theorem bijective_frobenius (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] :
    @[simp]
    theorem injective_frobenius (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] :
    @[simp]
    theorem surjective_frobenius (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] :
    @[simp]
    theorem frobeniusEquiv_apply (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] (a : R) :
    ↑(frobeniusEquiv R p) a = ↑(frobenius R p) a
    noncomputable def frobeniusEquiv (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] :
    R ≃+* R

    The Frobenius automorphism for a perfect ring.

    Equations
    Instances For
      @[simp]
      theorem coe_frobeniusEquiv (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] :
      ↑(frobeniusEquiv R p) = ↑(frobenius R p)
      @[simp]
      theorem frobeniusEquiv_symm_apply_frobenius (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] (x : R) :
      ↑(RingEquiv.symm (frobeniusEquiv R p)) (↑(frobenius R p) x) = x
      @[simp]
      theorem frobenius_apply_frobeniusEquiv_symm (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] (x : R) :
      ↑(frobenius R p) (↑(RingEquiv.symm (frobeniusEquiv R p)) x) = x
      @[simp]
      theorem frobeniusEquiv_symm_pow_p (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] (x : R) :
      ↑(RingEquiv.symm (frobeniusEquiv R p)) x ^ p = x
      theorem injective_pow_p (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] {x : R} {y : R} (h : x ^ p = y ^ p) :
      x = y
      theorem polynomial_expand_eq (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] (f : Polynomial R) :
      @[simp]
      theorem not_irreducible_expand (R : Type u_1) (p : ) [CommSemiring R] [Fact (Nat.Prime p)] [CharP R p] [PerfectRing R p] (f : Polynomial R) :
      class PerfectField (K : Type u_1) [Field K] :

      A perfect field.

      See also PerfectRing for a generalisation in positive characteristic.

      Instances
        theorem PerfectRing.toPerfectField (K : Type u_1) (p : ) [Field K] [hp : Fact (Nat.Prime p)] [CharP K p] [PerfectRing K p] :
        instance PerfectField.toPerfectRing (K : Type u_1) [Field K] [PerfectField K] (p : ) [hp : Fact (Nat.Prime p)] [CharP K p] :

        A perfect field of characteristic p (prime) is a perfect ring.

        Equations