Normal closures #
The normal closure of a tower of fields L/K/F
is the smallest intermediate field of L/K
that
contains the image of every F
-algebra embedding K →ₐ[F] L
.
Main Definitions #
normalClosure F K L
a tower of fieldsL/K/F
.
noncomputable def
normalClosure
(F : Type u_1)
(K : Type u_2)
(L : Type u_3)
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
:
The normal closure of K
in L
.
Equations
- normalClosure F K L = ⨆ (f : K →ₐ[F] L), AlgHom.fieldRange f
Instances For
theorem
normalClosure_def
(F : Type u_1)
(K : Type u_2)
(L : Type u_3)
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
:
normalClosure F K L = ⨆ (f : K →ₐ[F] L), AlgHom.fieldRange f
theorem
normalClosure_le_iff
{F : Type u_1}
{K : Type u_2}
{L : Type u_3}
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
{K' : IntermediateField F L}
:
normalClosure F K L ≤ K' ↔ ∀ (f : K →ₐ[F] L), AlgHom.fieldRange f ≤ K'
theorem
AlgHom.fieldRange_le_normalClosure
{F : Type u_1}
{K : Type u_2}
{L : Type u_3}
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
(f : K →ₐ[F] L)
:
AlgHom.fieldRange f ≤ normalClosure F K L
theorem
normalClosure.restrictScalars_eq_iSup_adjoin
(F : Type u_1)
(K : Type u_2)
(L : Type u_3)
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
[Algebra K L]
[IsScalarTower F K L]
[h : Normal F L]
:
normalClosure F K L = ⨆ (x : K), IntermediateField.adjoin F (Polynomial.rootSet (minpoly F x) L)
instance
normalClosure.normal
(F : Type u_1)
(K : Type u_2)
(L : Type u_3)
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
[Algebra K L]
[IsScalarTower F K L]
[h : Normal F L]
:
Normal F { x // x ∈ normalClosure F K L }
instance
normalClosure.is_finiteDimensional
(F : Type u_1)
(K : Type u_2)
(L : Type u_3)
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
[FiniteDimensional F K]
:
FiniteDimensional F { x // x ∈ normalClosure F K L }
noncomputable instance
normalClosure.algebra
(F : Type u_1)
(K : Type u_2)
(L : Type u_3)
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
[Algebra K L]
[IsScalarTower F K L]
:
Algebra K { x // x ∈ normalClosure F K L }
Equations
- One or more equations did not get rendered due to their size.
instance
normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldInstMembershipInstSetLikeIntermediateFieldNormalClosureToSMulToCommSemiringToSemifieldToSemiringToDivisionSemiringToSemifieldToSMulToCommSemiringToSemiringToSemiringToDivisionSemiringToSemifieldToSubalgebraAlgebraToSMulAlgebra
(F : Type u_1)
(K : Type u_2)
(L : Type u_3)
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
[Algebra K L]
[IsScalarTower F K L]
:
IsScalarTower F K { x // x ∈ normalClosure F K L }
Equations
- One or more equations did not get rendered due to their size.
instance
normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldInstMembershipInstSetLikeIntermediateFieldNormalClosureToSMulToCommSemiringToSemifieldToSemiringToCommSemiringToSemifieldToSemiringToDivisionSemiringToSemifieldToSubalgebraAlgebraInstSMulSubtypeMemSubalgebraInstMembershipInstSetLikeSubalgebraToSMulToCommSemiringId
(F : Type u_1)
(K : Type u_2)
(L : Type u_3)
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
[Algebra K L]
[IsScalarTower F K L]
:
IsScalarTower K { x // x ∈ normalClosure F K L } L
Equations
- One or more equations did not get rendered due to their size.
theorem
normalClosure.restrictScalars_eq
(F : Type u_1)
(K : Type u_2)
(L : Type u_3)
[Field F]
[Field K]
[Field L]
[Algebra F K]
[Algebra F L]
[Algebra K L]
[IsScalarTower F K L]
:
IntermediateField.restrictScalars F (AlgHom.fieldRange (IsScalarTower.toAlgHom K { x // x ∈ normalClosure F K L } L)) = normalClosure F K L
theorem
IntermediateField.le_normalClosure
{F : Type u_1}
{L : Type u_3}
[Field F]
[Field L]
[Algebra F L]
(K : IntermediateField F L)
:
K ≤ normalClosure F { x // x ∈ K } L
theorem
IntermediateField.normalClosure_of_normal
{F : Type u_1}
{L : Type u_3}
[Field F]
[Field L]
[Algebra F L]
(K : IntermediateField F L)
[Normal F { x // x ∈ K }]
:
normalClosure F { x // x ∈ K } L = K
theorem
IntermediateField.normalClosure_def'
{F : Type u_1}
{L : Type u_3}
[Field F]
[Field L]
[Algebra F L]
(K : IntermediateField F L)
[Normal F L]
:
normalClosure F { x // x ∈ K } L = ⨆ (f : L →ₐ[F] L), IntermediateField.map f K
theorem
IntermediateField.normalClosure_def''
{F : Type u_1}
{L : Type u_3}
[Field F]
[Field L]
[Algebra F L]
(K : IntermediateField F L)
[Normal F L]
:
normalClosure F { x // x ∈ K } L = ⨆ (f : L ≃ₐ[F] L), IntermediateField.map (↑f) K
theorem
IntermediateField.normalClosure_mono
{F : Type u_1}
{L : Type u_3}
[Field F]
[Field L]
[Algebra F L]
(K : IntermediateField F L)
(K' : IntermediateField F L)
[Normal F L]
(h : K ≤ K')
:
normalClosure F { x // x ∈ K } L ≤ normalClosure F { x // x ∈ K' } L
@[simp]
theorem
IntermediateField.closureOperator_apply
(F : Type u_1)
(L : Type u_3)
[Field F]
[Field L]
[Algebra F L]
[Normal F L]
(K : IntermediateField F L)
:
↑(IntermediateField.closureOperator F L) K = normalClosure F { x // x ∈ K } L
noncomputable def
IntermediateField.closureOperator
(F : Type u_1)
(L : Type u_3)
[Field F]
[Field L]
[Algebra F L]
[Normal F L]
:
normalClosure
as a ClosureOperator
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
IntermediateField.normal_iff_normalClosure_eq
{F : Type u_1}
{L : Type u_3}
[Field F]
[Field L]
[Algebra F L]
[Normal F L]
{K : IntermediateField F L}
:
theorem
IntermediateField.normal_iff_normalClosure_le
{F : Type u_1}
{L : Type u_3}
[Field F]
[Field L]
[Algebra F L]
[Normal F L]
{K : IntermediateField F L}
: