Documentation

Mathlib.Data.Set.Pointwise.ListOfFn

Pointwise operations with lists of sets #

This file proves some lemmas about pointwise algebraic operations with lists of sets.

theorem Set.mem_sum_list_ofFn {α : Type u_2} [AddMonoid α] {n : } {a : α} {s : Fin nSet α} :
a List.sum (List.ofFn s) f, List.sum (List.ofFn fun i => ↑(f i)) = a
theorem Set.mem_prod_list_ofFn {α : Type u_2} [Monoid α] {n : } {a : α} {s : Fin nSet α} :
a List.prod (List.ofFn s) f, List.prod (List.ofFn fun i => ↑(f i)) = a
theorem Set.mem_list_sum {α : Type u_2} [AddMonoid α] {l : List (Set α)} {a : α} :
a List.sum l l', List.sum (List.map (fun x => x.snd) l') = a List.map Sigma.fst l' = l
theorem Set.mem_list_prod {α : Type u_2} [Monoid α] {l : List (Set α)} {a : α} :
a List.prod l l', List.prod (List.map (fun x => x.snd) l') = a List.map Sigma.fst l' = l
theorem Set.mem_nsmul {α : Type u_2} [AddMonoid α] {s : Set α} {a : α} {n : } :
a n s f, List.sum (List.ofFn fun i => ↑(f i)) = a
theorem Set.mem_pow {α : Type u_2} [Monoid α] {s : Set α} {a : α} {n : } :
a s ^ n f, List.prod (List.ofFn fun i => ↑(f i)) = a