Pairwise relations on a list #
This file provides basic results about List.Pairwise
and List.pwFilter
(definitions are in
Data.List.Defs
).
Pairwise r [a 0, ..., a (n - 1)]
means ∀ i j, i < j → r (a i) (a j)
. For example,
Pairwise (≠) l
means that all elements of l
are distinct, and Pairwise (<) l
means that l
is strictly increasing.
pwFilter r l
is the list obtained by iteratively adding each element of l
that doesn't break
the pairwiseness of the list we have so far. It thus yields l'
a maximal sublist of l
such that
Pairwise r l'
.
Tags #
sorted, nodup
Pairwise #
theorem
List.Pairwise.forall_of_forall
{α : Type u_1}
{R : α → α → Prop}
{l : List α}
(H : Symmetric R)
(H₁ : (x : α) → x ∈ l → R x x)
(H₂ : List.Pairwise R l)
⦃x : α⦄
:
theorem
List.Pairwise.forall
{α : Type u_1}
{R : α → α → Prop}
{l : List α}
(hR : Symmetric R)
(hl : List.Pairwise R l)
⦃a : α⦄
:
theorem
List.Pairwise.set_pairwise
{α : Type u_1}
{R : α → α → Prop}
{l : List α}
(hl : List.Pairwise R l)
(hr : Symmetric R)
:
Set.Pairwise {x | x ∈ l} R
@[deprecated]
theorem
List.pairwise_map'
{α : Type u_1}
{β : Type u_2}
{R : α → α → Prop}
(f : β → α)
{l : List β}
:
List.Pairwise R (List.map f l) ↔ List.Pairwise (fun a b => R (f a) (f b)) l
theorem
List.pairwise_pmap
{α : Type u_1}
{β : Type u_2}
{R : α → α → Prop}
{p : β → Prop}
{f : (b : β) → p b → α}
{l : List β}
(h : (x : β) → x ∈ l → p x)
:
List.Pairwise R (List.pmap f l h) ↔ List.Pairwise (fun b₁ b₂ => (h₁ : p b₁) → (h₂ : p b₂) → R (f b₁ h₁) (f b₂ h₂)) l
theorem
List.Pairwise.pmap
{α : Type u_1}
{β : Type u_2}
{R : α → α → Prop}
{l : List α}
(hl : List.Pairwise R l)
{p : α → Prop}
{f : (a : α) → p a → β}
(h : (x : α) → x ∈ l → p x)
{S : β → β → Prop}
(hS : ⦃x : α⦄ → (hx : p x) → ⦃y : α⦄ → (hy : p y) → R x y → S (f x hx) (f y hy))
:
List.Pairwise S (List.pmap f l h)
theorem
List.pairwise_of_forall_mem_list
{α : Type u_1}
{l : List α}
{r : α → α → Prop}
(h : (a : α) → a ∈ l → (b : α) → b ∈ l → r a b)
:
List.Pairwise r l
theorem
List.pairwise_of_reflexive_of_forall_ne
{α : Type u_1}
{l : List α}
{r : α → α → Prop}
(hr : Reflexive r)
(h : (a : α) → a ∈ l → (b : α) → b ∈ l → a ≠ b → r a b)
:
List.Pairwise r l
@[deprecated List.pairwise_iff_get]
theorem
List.pairwise_iff_nthLe
{α : Type u_1}
{R : α → α → Prop}
{l : List α}
:
List.Pairwise R l ↔ (i j : ℕ) → (h₁ : j < List.length l) → (h₂ : i < j) → R (List.nthLe l i (_ : i < List.length l)) (List.nthLe l j h₁)
Pairwise filtering #
theorem
List.Pairwise.pwFilter
{α : Type u_1}
{R : α → α → Prop}
[DecidableRel R]
{l : List α}
:
List.Pairwise R l → List.pwFilter R l = l
Alias of the reverse direction of List.pwFilter_eq_self
.