Instances on PUnit #
This file collects facts about algebraic structures on the one-element type, e.g. that it is a commutative ring.
theorem
PUnit.addCommGroup.proof_9 :
∀ (n : ℕ) (a : PUnit.{u_1 + 1} ), (fun x x => PUnit.unit) (Int.negSucc n) a = (fun x x => PUnit.unit) (Int.negSucc n) a
theorem
PUnit.addCommGroup.proof_7 :
∀ (a : PUnit.{u_1 + 1} ), (fun x x => PUnit.unit) 0 a = (fun x x => PUnit.unit) 0 a
theorem
PUnit.addCommGroup.proof_4 :
∀ (x : PUnit.{u_1 + 1} ), (fun x x => PUnit.unit) 0 x = (fun x x => PUnit.unit) 0 x
theorem
PUnit.addCommGroup.proof_8 :
∀ (n : ℕ) (a : PUnit.{u_1 + 1} ),
(fun x x => PUnit.unit) (Int.ofNat (Nat.succ n)) a = (fun x x => PUnit.unit) (Int.ofNat (Nat.succ n)) a
theorem
PUnit.addCommGroup.proof_5 :
∀ (n : ℕ) (x : PUnit.{u_1 + 1} ), (fun x x => PUnit.unit) (n + 1) x = (fun x x => PUnit.unit) (n + 1) x
Equations
- PUnit.instAddPUnit = { add := fun x x => () }
Equations
- PUnit.instMulPUnit = { mul := fun x x => () }
Equations
- PUnit.instSubPUnit = { sub := fun x x => () }
Equations
- PUnit.instDivPUnit = { div := fun x x => () }
Equations
- PUnit.instNegPUnit = { neg := fun x => () }
Equations
- PUnit.instInvPUnit = { inv := fun x => () }
Equations
- PUnit.commRing = let src := PUnit.commGroup; let src_1 := PUnit.addCommGroup; CommRing.mk (_ : ∀ (a b : PUnit.{u_1 + 1} ), a * b = b * a)
Equations
- PUnit.cancelCommMonoidWithZero = let src := PUnit.commRing; CancelCommMonoidWithZero.mk
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- PUnit.vadd = { vadd := fun x x => PUnit.unit }
Equations
- PUnit.smul = { smul := fun x x => PUnit.unit }
@[simp]
@[simp]
Equations
- PUnit.smulWithZero = let src := PUnit.smul; SMulWithZero.mk (_ : ∀ (m : PUnit.{1}), 0 • m = 0)
Equations
- PUnit.mulAction = let src := PUnit.smul; MulAction.mk (_ : ∀ (b : PUnit.{u_2 + 1} ), 1 • b = b) (_ : ∀ (x y : R) (b : PUnit.{u_2 + 1} ), (x * y) • b = x • y • b)
Equations
- One or more equations did not get rendered due to their size.