Documentation

Mathlib.Algebra.Order.Monoid.OrderDual

Ordered monoid structures on the order dual. #

theorem OrderDual.contravariantClass_add_le.proof_1 {α : Type u_1} [LE α] [Add α] [c : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x x_1] :
ContravariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x + x_1) fun x x_1 => x x_1
instance OrderDual.contravariantClass_add_le {α : Type u} [LE α] [Add α] [c : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x x_1] :
ContravariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x + x_1) fun x x_1 => x x_1
Equations
instance OrderDual.contravariantClass_mul_le {α : Type u} [LE α] [Mul α] [c : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x x_1] :
ContravariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x * x_1) fun x x_1 => x x_1
Equations
instance OrderDual.covariantClass_add_le {α : Type u} [LE α] [Add α] [c : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x x_1] :
CovariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x + x_1) fun x x_1 => x x_1
Equations
theorem OrderDual.covariantClass_add_le.proof_1 {α : Type u_1} [LE α] [Add α] [c : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x x_1] :
CovariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x + x_1) fun x x_1 => x x_1
instance OrderDual.covariantClass_mul_le {α : Type u} [LE α] [Mul α] [c : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x x_1] :
CovariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x * x_1) fun x x_1 => x x_1
Equations
theorem OrderDual.contravariantClass_swap_add_le.proof_1 {α : Type u_1} [LE α] [Add α] [c : ContravariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x x_1] :
ContravariantClass αᵒᵈ αᵒᵈ (Function.swap fun x x_1 => x + x_1) fun x x_1 => x x_1
instance OrderDual.covariantClass_swap_add_le {α : Type u} [LE α] [Add α] [c : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x x_1] :
CovariantClass αᵒᵈ αᵒᵈ (Function.swap fun x x_1 => x + x_1) fun x x_1 => x x_1
Equations
theorem OrderDual.covariantClass_swap_add_le.proof_1 {α : Type u_1} [LE α] [Add α] [c : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x x_1] :
CovariantClass αᵒᵈ αᵒᵈ (Function.swap fun x x_1 => x + x_1) fun x x_1 => x x_1
instance OrderDual.covariantClass_swap_mul_le {α : Type u} [LE α] [Mul α] [c : CovariantClass α α (Function.swap fun x x_1 => x * x_1) fun x x_1 => x x_1] :
CovariantClass αᵒᵈ αᵒᵈ (Function.swap fun x x_1 => x * x_1) fun x x_1 => x x_1
Equations
instance OrderDual.contravariantClass_add_lt {α : Type u} [LT α] [Add α] [c : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1] :
ContravariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x + x_1) fun x x_1 => x < x_1
Equations
theorem OrderDual.contravariantClass_add_lt.proof_1 {α : Type u_1} [LT α] [Add α] [c : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1] :
ContravariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x + x_1) fun x x_1 => x < x_1
instance OrderDual.contravariantClass_mul_lt {α : Type u} [LT α] [Mul α] [c : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1] :
ContravariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x * x_1) fun x x_1 => x < x_1
Equations
instance OrderDual.covariantClass_add_lt {α : Type u} [LT α] [Add α] [c : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1] :
CovariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x + x_1) fun x x_1 => x < x_1
Equations
theorem OrderDual.covariantClass_add_lt.proof_1 {α : Type u_1} [LT α] [Add α] [c : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1] :
CovariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x + x_1) fun x x_1 => x < x_1
instance OrderDual.covariantClass_mul_lt {α : Type u} [LT α] [Mul α] [c : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1] :
CovariantClass αᵒᵈ αᵒᵈ (fun x x_1 => x * x_1) fun x x_1 => x < x_1
Equations
theorem OrderDual.contravariantClass_swap_add_lt.proof_1 {α : Type u_1} [LT α] [Add α] [c : ContravariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1] :
ContravariantClass αᵒᵈ αᵒᵈ (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
instance OrderDual.covariantClass_swap_add_lt {α : Type u} [LT α] [Add α] [c : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1] :
CovariantClass αᵒᵈ αᵒᵈ (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
Equations
theorem OrderDual.covariantClass_swap_add_lt.proof_1 {α : Type u_1} [LT α] [Add α] [c : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1] :
CovariantClass αᵒᵈ αᵒᵈ (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
instance OrderDual.covariantClass_swap_mul_lt {α : Type u} [LT α] [Mul α] [c : CovariantClass α α (Function.swap fun x x_1 => x * x_1) fun x x_1 => x < x_1] :
CovariantClass αᵒᵈ αᵒᵈ (Function.swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
Equations
theorem OrderDual.orderedAddCommMonoid.proof_2 {α : Type u_1} [OrderedAddCommMonoid α] (a : αᵒᵈ) (b : αᵒᵈ) :
a bb aa = b
theorem OrderDual.orderedAddCommMonoid.proof_3 {α : Type u_1} [OrderedAddCommMonoid α] :
∀ (x x_1 : αᵒᵈ), x x_1∀ (c : αᵒᵈ), c + x c + x_1
theorem OrderDual.orderedAddCommMonoid.proof_1 {α : Type u_1} [OrderedAddCommMonoid α] (a : αᵒᵈ) (b : αᵒᵈ) :
a + b = b + a
Equations
  • One or more equations did not get rendered due to their size.
Equations
theorem OrderDual.orderedAddCancelCommMonoid.proof_2 {α : Type u_1} [OrderedCancelAddCommMonoid α] :
∀ (x x_1 x_2 : α), x + x_1 x + x_2x_1 x_2
Equations
  • One or more equations did not get rendered due to their size.
theorem OrderDual.orderedAddCancelCommMonoid.proof_1 {α : Type u_1} [OrderedCancelAddCommMonoid α] (a : αᵒᵈ) (b : αᵒᵈ) :
a b∀ (c : αᵒᵈ), c + a c + b
Equations
  • One or more equations did not get rendered due to their size.
theorem OrderDual.linearOrderedAddCancelCommMonoid.proof_1 {α : Type u_1} [LinearOrderedCancelAddCommMonoid α] (a : αᵒᵈ) (b : αᵒᵈ) :
a b∀ (c : αᵒᵈ), c + a c + b
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
theorem OrderDual.linearOrderedAddCommMonoid.proof_2 {α : Type u_1} [LinearOrderedAddCommMonoid α] (a : αᵒᵈ) (b : αᵒᵈ) :
min a b = if a b then a else b
Equations
  • One or more equations did not get rendered due to their size.
theorem OrderDual.linearOrderedAddCommMonoid.proof_5 {α : Type u_1} [LinearOrderedAddCommMonoid α] (a : αᵒᵈ) (b : αᵒᵈ) :
a b∀ (c : αᵒᵈ), c + a c + b
theorem OrderDual.linearOrderedAddCommMonoid.proof_3 {α : Type u_1} [LinearOrderedAddCommMonoid α] (a : αᵒᵈ) (b : αᵒᵈ) :
max a b = if a b then b else a
Equations
  • One or more equations did not get rendered due to their size.