Documentation

Mathlib.Algebra.Order.Module

Ordered module #

In this file we provide lemmas about OrderedSMul that hold once a module structure is present.

References #

Tags #

ordered module, ordered scalar, ordered smul, ordered action, ordered vector space

instance instModuleOrderDual {k : Type u_1} {M : Type u_2} [Semiring k] [OrderedAddCommMonoid M] [Module k M] :
Equations
theorem smul_neg_iff_of_pos {k : Type u_1} {M : Type u_2} [OrderedSemiring k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {c : k} (hc : 0 < c) :
c a < 0 a < 0
theorem smul_lt_smul_of_neg {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (h : a < b) (hc : c < 0) :
c b < c a
theorem smul_le_smul_of_nonpos {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (h : a b) (hc : c 0) :
c b c a
theorem eq_of_smul_eq_smul_of_neg_of_le {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (hab : c a = c b) (hc : c < 0) (h : a b) :
a = b
theorem lt_of_smul_lt_smul_of_nonpos {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (h : c a < c b) (hc : c 0) :
b < a
theorem smul_lt_smul_iff_of_neg {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (hc : c < 0) :
c a < c b b < a
theorem smul_neg_iff_of_neg {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {c : k} (hc : c < 0) :
c a < 0 0 < a
theorem smul_pos_iff_of_neg {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {c : k} (hc : c < 0) :
0 < c a a < 0
theorem smul_nonpos_of_nonpos_of_nonneg {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {c : k} (hc : c 0) (ha : 0 a) :
c a 0
theorem smul_nonneg_of_nonpos_of_nonpos {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {c : k} (hc : c 0) (ha : a 0) :
0 c a
theorem smul_pos_of_neg_of_neg {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {c : k} (hc : c < 0) :
a < 00 < c a

Alias of the reverse direction of smul_pos_iff_of_neg.

theorem smul_neg_of_pos_of_neg {k : Type u_1} {M : Type u_2} [OrderedSemiring k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {c : k} (hc : 0 < c) :
a < 0c a < 0

Alias of the reverse direction of smul_neg_iff_of_pos.

theorem smul_neg_of_neg_of_pos {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {c : k} (hc : c < 0) :
0 < ac a < 0

Alias of the reverse direction of smul_neg_iff_of_neg.

theorem antitone_smul_left {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {c : k} (hc : c 0) :
theorem strict_anti_smul_left {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {c : k} (hc : c < 0) :
theorem smul_add_smul_le_smul_add_smul {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] [ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x x_1] {a : k} {b : k} {c : M} {d : M} (hab : a b) (hcd : c d) :
a d + b c a c + b d

Binary rearrangement inequality.

theorem smul_add_smul_le_smul_add_smul' {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] [ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x x_1] {a : k} {b : k} {c : M} {d : M} (hba : b a) (hdc : d c) :
a d + b c a c + b d

Binary rearrangement inequality.

theorem smul_add_smul_lt_smul_add_smul {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] [CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1] [ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1] {a : k} {b : k} {c : M} {d : M} (hab : a < b) (hcd : c < d) :
a d + b c < a c + b d

Binary strict rearrangement inequality.

theorem smul_add_smul_lt_smul_add_smul' {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] [CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1] [ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1] {a : k} {b : k} {c : M} {d : M} (hba : b < a) (hdc : d < c) :
a d + b c < a c + b d

Binary strict rearrangement inequality.

theorem smul_le_smul_iff_of_neg {k : Type u_1} {M : Type u_2} [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (hc : c < 0) :
c a c b b a
theorem inv_smul_le_iff_of_neg {k : Type u_1} {M : Type u_2} [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (h : c < 0) :
c⁻¹ a b c b a
theorem inv_smul_lt_iff_of_neg {k : Type u_1} {M : Type u_2} [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (h : c < 0) :
c⁻¹ a < b c b < a
theorem smul_inv_le_iff_of_neg {k : Type u_1} {M : Type u_2} [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (h : c < 0) :
a c⁻¹ b b c a
theorem smul_inv_lt_iff_of_neg {k : Type u_1} {M : Type u_2} [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : M} {b : M} {c : k} (h : c < 0) :
a < c⁻¹ b b < c a
@[simp]
theorem OrderIso.smulLeftDual_symm_apply {k : Type u_1} (M : Type u_2) [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {c : k} (hc : c < 0) (b : Mᵒᵈ) :
↑(RelIso.symm (OrderIso.smulLeftDual M hc)) b = c⁻¹ OrderDual.ofDual b
@[simp]
theorem OrderIso.smulLeftDual_apply {k : Type u_1} (M : Type u_2) [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {c : k} (hc : c < 0) (b : M) :
↑(OrderIso.smulLeftDual M hc) b = OrderDual.toDual (c b)
def OrderIso.smulLeftDual {k : Type u_1} (M : Type u_2) [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {c : k} (hc : c < 0) :

Left scalar multiplication as an order isomorphism.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Upper/lower bounds #

    theorem smul_lowerBounds_subset_upperBounds_smul {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {s : Set M} {c : k} (hc : c 0) :
    theorem smul_upperBounds_subset_lowerBounds_smul {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {s : Set M} {c : k} (hc : c 0) :
    theorem BddBelow.smul_of_nonpos {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {s : Set M} {c : k} (hc : c 0) (hs : BddBelow s) :
    theorem BddAbove.smul_of_nonpos {k : Type u_1} {M : Type u_2} [OrderedRing k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {s : Set M} {c : k} (hc : c 0) (hs : BddAbove s) :
    @[simp]
    theorem lowerBounds_smul_of_neg {k : Type u_1} {M : Type u_2} [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {s : Set M} {c : k} (hc : c < 0) :
    @[simp]
    theorem upperBounds_smul_of_neg {k : Type u_1} {M : Type u_2} [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {s : Set M} {c : k} (hc : c < 0) :
    @[simp]
    theorem bddBelow_smul_iff_of_neg {k : Type u_1} {M : Type u_2} [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {s : Set M} {c : k} (hc : c < 0) :
    @[simp]
    theorem bddAbove_smul_iff_of_neg {k : Type u_1} {M : Type u_2} [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {s : Set M} {c : k} (hc : c < 0) :