Ordered module #
In this file we provide lemmas about OrderedSMul
that hold once a module structure is present.
References #
- https://en.wikipedia.org/wiki/Ordered_module
Tags #
ordered module, ordered scalar, ordered smul, ordered action, ordered vector space
theorem
smul_neg_iff_of_pos
{k : Type u_1}
{M : Type u_2}
[OrderedSemiring k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{c : k}
(hc : 0 < c)
:
theorem
smul_lt_smul_of_neg
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(h : a < b)
(hc : c < 0)
:
theorem
smul_le_smul_of_nonpos
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(h : a ≤ b)
(hc : c ≤ 0)
:
theorem
eq_of_smul_eq_smul_of_neg_of_le
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(hab : c • a = c • b)
(hc : c < 0)
(h : a ≤ b)
:
a = b
theorem
lt_of_smul_lt_smul_of_nonpos
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(h : c • a < c • b)
(hc : c ≤ 0)
:
b < a
theorem
smul_lt_smul_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(hc : c < 0)
:
theorem
smul_neg_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{c : k}
(hc : c < 0)
:
theorem
smul_pos_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{c : k}
(hc : c < 0)
:
theorem
smul_nonpos_of_nonpos_of_nonneg
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{c : k}
(hc : c ≤ 0)
(ha : 0 ≤ a)
:
theorem
smul_nonneg_of_nonpos_of_nonpos
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{c : k}
(hc : c ≤ 0)
(ha : a ≤ 0)
:
theorem
smul_pos_of_neg_of_neg
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{c : k}
(hc : c < 0)
:
Alias of the reverse direction of smul_pos_iff_of_neg
.
theorem
smul_neg_of_pos_of_neg
{k : Type u_1}
{M : Type u_2}
[OrderedSemiring k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{c : k}
(hc : 0 < c)
:
Alias of the reverse direction of smul_neg_iff_of_pos
.
theorem
smul_neg_of_neg_of_pos
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{c : k}
(hc : c < 0)
:
Alias of the reverse direction of smul_neg_iff_of_neg
.
theorem
antitone_smul_left
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{c : k}
(hc : c ≤ 0)
:
theorem
strict_anti_smul_left
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{c : k}
(hc : c < 0)
:
StrictAnti (SMul.smul c)
theorem
smul_add_smul_le_smul_add_smul
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
[ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1]
{a : k}
{b : k}
{c : M}
{d : M}
(hab : a ≤ b)
(hcd : c ≤ d)
:
Binary rearrangement inequality.
theorem
smul_add_smul_le_smul_add_smul'
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
[ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1]
{a : k}
{b : k}
{c : M}
{d : M}
(hba : b ≤ a)
(hdc : d ≤ c)
:
Binary rearrangement inequality.
theorem
smul_add_smul_lt_smul_add_smul
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
[CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1]
[ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1]
{a : k}
{b : k}
{c : M}
{d : M}
(hab : a < b)
(hcd : c < d)
:
Binary strict rearrangement inequality.
theorem
smul_add_smul_lt_smul_add_smul'
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
[CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1]
[ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1]
{a : k}
{b : k}
{c : M}
{d : M}
(hba : b < a)
(hdc : d < c)
:
Binary strict rearrangement inequality.
theorem
smul_le_smul_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(hc : c < 0)
:
theorem
inv_smul_le_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(h : c < 0)
:
theorem
inv_smul_lt_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(h : c < 0)
:
theorem
smul_inv_le_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(h : c < 0)
:
theorem
smul_inv_lt_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{a : M}
{b : M}
{c : k}
(h : c < 0)
:
@[simp]
theorem
OrderIso.smulLeftDual_symm_apply
{k : Type u_1}
(M : Type u_2)
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{c : k}
(hc : c < 0)
(b : Mᵒᵈ)
:
↑(RelIso.symm (OrderIso.smulLeftDual M hc)) b = c⁻¹ • ↑OrderDual.ofDual b
@[simp]
theorem
OrderIso.smulLeftDual_apply
{k : Type u_1}
(M : Type u_2)
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{c : k}
(hc : c < 0)
(b : M)
:
↑(OrderIso.smulLeftDual M hc) b = ↑OrderDual.toDual (c • b)
def
OrderIso.smulLeftDual
{k : Type u_1}
(M : Type u_2)
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{c : k}
(hc : c < 0)
:
Left scalar multiplication as an order isomorphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Upper/lower bounds #
theorem
smul_lowerBounds_subset_upperBounds_smul
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{s : Set M}
{c : k}
(hc : c ≤ 0)
:
c • lowerBounds s ⊆ upperBounds (c • s)
theorem
smul_upperBounds_subset_lowerBounds_smul
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{s : Set M}
{c : k}
(hc : c ≤ 0)
:
c • upperBounds s ⊆ lowerBounds (c • s)
theorem
BddBelow.smul_of_nonpos
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{s : Set M}
{c : k}
(hc : c ≤ 0)
(hs : BddBelow s)
:
theorem
BddAbove.smul_of_nonpos
{k : Type u_1}
{M : Type u_2}
[OrderedRing k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{s : Set M}
{c : k}
(hc : c ≤ 0)
(hs : BddAbove s)
:
@[simp]
theorem
lowerBounds_smul_of_neg
{k : Type u_1}
{M : Type u_2}
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{s : Set M}
{c : k}
(hc : c < 0)
:
lowerBounds (c • s) = c • upperBounds s
@[simp]
theorem
upperBounds_smul_of_neg
{k : Type u_1}
{M : Type u_2}
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{s : Set M}
{c : k}
(hc : c < 0)
:
upperBounds (c • s) = c • lowerBounds s
@[simp]
theorem
bddBelow_smul_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{s : Set M}
{c : k}
(hc : c < 0)
:
@[simp]
theorem
bddAbove_smul_iff_of_neg
{k : Type u_1}
{M : Type u_2}
[LinearOrderedField k]
[OrderedAddCommGroup M]
[Module k M]
[OrderedSMul k M]
{s : Set M}
{c : k}
(hc : c < 0)
: