Documentation

Mathlib.Algebra.Order.Group.Units

The units of an ordered commutative monoid form an ordered commutative group #

The units of an ordered commutative additive monoid form an ordered commutative additive group.

Equations
  • One or more equations did not get rendered due to their size.
theorem AddUnits.orderedAddCommGroup.proof_3 {α : Type u_1} [OrderedAddCommMonoid α] :
∀ (x x_1 : AddUnits α), x x_1∀ (x_2 : AddUnits α), x_2 + x x_2 + x_1
theorem AddUnits.orderedAddCommGroup.proof_1 {α : Type u_1} [OrderedAddCommMonoid α] (a : AddUnits α) (b : AddUnits α) :
a + b = b + a
theorem AddUnits.orderedAddCommGroup.proof_2 {α : Type u_1} [OrderedAddCommMonoid α] (a : AddUnits α) (b : AddUnits α) :
a bb aa = b

The units of an ordered commutative monoid form an ordered commutative group.

Equations
  • Units.orderedCommGroup = let src := Units.instPartialOrderUnits; let src_1 := Units.instCommGroupUnits; OrderedCommGroup.mk (_ : ∀ (x x_1 : αˣ), x x_1∀ (x_2 : αˣ), x_2 * x x_2 * x_1)