Divisibility in groups with zero. #
Lemmas about divisibility in groups and monoids with zero.
@[simp]
Given an element a of a commutative semigroup with zero, there exists another element whose
product with zero equals a iff a equals zero.
theorem
mul_dvd_mul_iff_left
{α : Type u_1}
[CancelMonoidWithZero α]
{a : α}
{b : α}
{c : α}
(ha : a ≠ 0)
:
Given two elements b, c of a CancelMonoidWithZero and a nonzero element a,
a*b divides a*c iff b divides c.
theorem
mul_dvd_mul_iff_right
{α : Type u_1}
[CancelCommMonoidWithZero α]
{a : α}
{b : α}
{c : α}
(hc : c ≠ 0)
:
Given two elements a, b of a commutative CancelMonoidWithZero and a nonzero
element c, a*c divides b*c iff a divides b.
DvdNotUnit a b expresses that a divides b "strictly", i.e. that b divided by a
is not a unit.
Instances For
theorem
dvdNotUnit_of_dvd_of_not_dvd
{α : Type u_1}
[CommMonoidWithZero α]
{a : α}
{b : α}
(hd : a ∣ b)
(hnd : ¬b ∣ a)
:
DvdNotUnit a b
theorem
ne_zero_of_dvd_ne_zero
{α : Type u_1}
[MonoidWithZero α]
{p : α}
{q : α}
(h₁ : q ≠ 0)
(h₂ : p ∣ q)
:
p ≠ 0
theorem
dvd_antisymm
{α : Type u_1}
[CancelCommMonoidWithZero α]
[Subsingleton αˣ]
{a : α}
{b : α}
:
theorem
dvd_antisymm'
{α : Type u_1}
[CancelCommMonoidWithZero α]
[Subsingleton αˣ]
{a : α}
{b : α}
:
theorem
Dvd.dvd.antisymm
{α : Type u_1}
[CancelCommMonoidWithZero α]
[Subsingleton αˣ]
{a : α}
{b : α}
:
Alias of dvd_antisymm.
theorem
Dvd.dvd.antisymm'
{α : Type u_1}
[CancelCommMonoidWithZero α]
[Subsingleton αˣ]
{a : α}
{b : α}
:
Alias of dvd_antisymm'.
theorem
eq_of_forall_dvd
{α : Type u_1}
[CancelCommMonoidWithZero α]
[Subsingleton αˣ]
{a : α}
{b : α}
(h : ∀ (c : α), a ∣ c ↔ b ∣ c)
:
a = b
theorem
eq_of_forall_dvd'
{α : Type u_1}
[CancelCommMonoidWithZero α]
[Subsingleton αˣ]
{a : α}
{b : α}
(h : ∀ (c : α), c ∣ a ↔ c ∣ b)
:
a = b