Documentation

Mathlib.Algebra.Divisibility.Units

Lemmas about divisibility and units #

theorem Units.coe_dvd {α : Type u_1} [Monoid α] {a : α} {u : αˣ} :
u a

Elements of the unit group of a monoid represented as elements of the monoid divide any element of the monoid.

theorem Units.dvd_mul_right {α : Type u_1} [Monoid α] {a : α} {b : α} {u : αˣ} :
a b * u a b

In a monoid, an element a divides an element b iff a divides all associates of b.

theorem Units.mul_right_dvd {α : Type u_1} [Monoid α] {a : α} {b : α} {u : αˣ} :
a * u b a b

In a monoid, an element a divides an element b iff all associates of a divide b.

theorem Units.dvd_mul_left {α : Type u_1} [CommMonoid α] {a : α} {b : α} {u : αˣ} :
a u * b a b

In a commutative monoid, an element a divides an element b iff a divides all left associates of b.

theorem Units.mul_left_dvd {α : Type u_1} [CommMonoid α] {a : α} {b : α} {u : αˣ} :
u * a b a b

In a commutative monoid, an element a divides an element b iff all left associates of a divide b.

@[simp]
theorem IsUnit.dvd {α : Type u_1} [Monoid α] {a : α} {u : α} (hu : IsUnit u) :
u a

Units of a monoid divide any element of the monoid.

@[simp]
theorem IsUnit.dvd_mul_right {α : Type u_1} [Monoid α] {a : α} {b : α} {u : α} (hu : IsUnit u) :
a b * u a b
@[simp]
theorem IsUnit.mul_right_dvd {α : Type u_1} [Monoid α] {a : α} {b : α} {u : α} (hu : IsUnit u) :
a * u b a b

In a monoid, an element a divides an element b iff all associates of a divide b.

@[simp]
theorem IsUnit.dvd_mul_left {α : Type u_1} [CommMonoid α] (a : α) (b : α) (u : α) (hu : IsUnit u) :
a u * b a b

In a commutative monoid, an element a divides an element b iff a divides all left associates of b.

@[simp]
theorem IsUnit.mul_left_dvd {α : Type u_1} [CommMonoid α] (a : α) (b : α) (u : α) (hu : IsUnit u) :
u * a b a b

In a commutative monoid, an element a divides an element b iff all left associates of a divide b.

theorem isUnit_iff_dvd_one {α : Type u_1} [CommMonoid α] {x : α} :
IsUnit x x 1
theorem isUnit_iff_forall_dvd {α : Type u_1} [CommMonoid α] {x : α} :
IsUnit x ∀ (y : α), x y
theorem isUnit_of_dvd_unit {α : Type u_1} [CommMonoid α] {x : α} {y : α} (xy : x y) (hu : IsUnit y) :
theorem isUnit_of_dvd_one {α : Type u_1} [CommMonoid α] {a : α} (h : a 1) :
theorem not_isUnit_of_not_isUnit_dvd {α : Type u_1} [CommMonoid α] {a : α} {b : α} (ha : ¬IsUnit a) (hb : a b) :