Lemmas about divisibility and units #
In a commutative monoid, an element a
divides an element b
iff a
divides all left
associates of b
.
In a commutative monoid, an element a
divides an element b
iff all
left associates of a
divide b
.
@[simp]
In a commutative monoid, an element a
divides an element b
iff a
divides all left
associates of b
.
@[simp]
In a commutative monoid, an element a
divides an element b
iff all
left associates of a
divide b
.
theorem
isUnit_of_dvd_unit
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
(xy : x ∣ y)
(hu : IsUnit y)
:
IsUnit x
theorem
not_isUnit_of_not_isUnit_dvd
{α : Type u_1}
[CommMonoid α]
{a : α}
{b : α}
(ha : ¬IsUnit a)
(hb : a ∣ b)
: