Documentation

Mathlib.Algebra.BigOperators.NatAntidiagonal

Big operators for NatAntidiagonal #

This file contains theorems relevant to big operators over Finset.NatAntidiagonal.

theorem Finset.Nat.prod_antidiagonal_succ {M : Type u_1} [CommMonoid M] {n : } {f : × M} :
(Finset.prod (Finset.Nat.antidiagonal (n + 1)) fun p => f p) = f (0, n + 1) * Finset.prod (Finset.Nat.antidiagonal n) fun p => f (p.fst + 1, p.snd)
theorem Finset.Nat.sum_antidiagonal_succ {N : Type u_2} [AddCommMonoid N] {n : } {f : × N} :
(Finset.sum (Finset.Nat.antidiagonal (n + 1)) fun p => f p) = f (0, n + 1) + Finset.sum (Finset.Nat.antidiagonal n) fun p => f (p.fst + 1, p.snd)
theorem Finset.Nat.prod_antidiagonal_succ' {M : Type u_1} [CommMonoid M] {n : } {f : × M} :
(Finset.prod (Finset.Nat.antidiagonal (n + 1)) fun p => f p) = f (n + 1, 0) * Finset.prod (Finset.Nat.antidiagonal n) fun p => f (p.fst, p.snd + 1)
theorem Finset.Nat.sum_antidiagonal_succ' {N : Type u_2} [AddCommMonoid N] {n : } {f : × N} :
(Finset.sum (Finset.Nat.antidiagonal (n + 1)) fun p => f p) = f (n + 1, 0) + Finset.sum (Finset.Nat.antidiagonal n) fun p => f (p.fst, p.snd + 1)
theorem Finset.Nat.sum_antidiagonal_subst {M : Type u_1} [AddCommMonoid M] {n : } {f : × M} :
(Finset.sum (Finset.Nat.antidiagonal n) fun p => f p n) = Finset.sum (Finset.Nat.antidiagonal n) fun p => f p (p.fst + p.snd)
theorem Finset.Nat.prod_antidiagonal_subst {M : Type u_1} [CommMonoid M] {n : } {f : × M} :
(Finset.prod (Finset.Nat.antidiagonal n) fun p => f p n) = Finset.prod (Finset.Nat.antidiagonal n) fun p => f p (p.fst + p.snd)
theorem Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk {M : Type u_3} [AddCommMonoid M] (f : × M) (n : ) :
(Finset.sum (Finset.Nat.antidiagonal n) fun ij => f ij) = Finset.sum (Finset.range (Nat.succ n)) fun k => f (k, n - k)
theorem Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk {M : Type u_3} [CommMonoid M] (f : × M) (n : ) :
(Finset.prod (Finset.Nat.antidiagonal n) fun ij => f ij) = Finset.prod (Finset.range (Nat.succ n)) fun k => f (k, n - k)
theorem Finset.Nat.sum_antidiagonal_eq_sum_range_succ {M : Type u_3} [AddCommMonoid M] (f : M) (n : ) :
(Finset.sum (Finset.Nat.antidiagonal n) fun ij => f ij.fst ij.snd) = Finset.sum (Finset.range (Nat.succ n)) fun k => f k (n - k)

This lemma matches more generally than Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk when using rw ←.

theorem Finset.Nat.prod_antidiagonal_eq_prod_range_succ {M : Type u_3} [CommMonoid M] (f : M) (n : ) :
(Finset.prod (Finset.Nat.antidiagonal n) fun ij => f ij.fst ij.snd) = Finset.prod (Finset.range (Nat.succ n)) fun k => f k (n - k)

This lemma matches more generally than Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk when using rw ←.