Big operators for NatAntidiagonal
#
This file contains theorems relevant to big operators over Finset.NatAntidiagonal
.
theorem
Finset.Nat.prod_antidiagonal_succ
{M : Type u_1}
[CommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → M}
:
(Finset.prod (Finset.Nat.antidiagonal (n + 1)) fun p => f p) = f (0, n + 1) * Finset.prod (Finset.Nat.antidiagonal n) fun p => f (p.fst + 1, p.snd)
theorem
Finset.Nat.sum_antidiagonal_succ
{N : Type u_2}
[AddCommMonoid N]
{n : ℕ}
{f : ℕ × ℕ → N}
:
(Finset.sum (Finset.Nat.antidiagonal (n + 1)) fun p => f p) = f (0, n + 1) + Finset.sum (Finset.Nat.antidiagonal n) fun p => f (p.fst + 1, p.snd)
theorem
Finset.Nat.sum_antidiagonal_swap
{M : Type u_1}
[AddCommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → M}
:
(Finset.sum (Finset.Nat.antidiagonal n) fun p => f (Prod.swap p)) = Finset.sum (Finset.Nat.antidiagonal n) fun p => f p
theorem
Finset.Nat.prod_antidiagonal_swap
{M : Type u_1}
[CommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → M}
:
(Finset.prod (Finset.Nat.antidiagonal n) fun p => f (Prod.swap p)) = Finset.prod (Finset.Nat.antidiagonal n) fun p => f p
theorem
Finset.Nat.prod_antidiagonal_succ'
{M : Type u_1}
[CommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → M}
:
(Finset.prod (Finset.Nat.antidiagonal (n + 1)) fun p => f p) = f (n + 1, 0) * Finset.prod (Finset.Nat.antidiagonal n) fun p => f (p.fst, p.snd + 1)
theorem
Finset.Nat.sum_antidiagonal_succ'
{N : Type u_2}
[AddCommMonoid N]
{n : ℕ}
{f : ℕ × ℕ → N}
:
(Finset.sum (Finset.Nat.antidiagonal (n + 1)) fun p => f p) = f (n + 1, 0) + Finset.sum (Finset.Nat.antidiagonal n) fun p => f (p.fst, p.snd + 1)
theorem
Finset.Nat.sum_antidiagonal_subst
{M : Type u_1}
[AddCommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → ℕ → M}
:
(Finset.sum (Finset.Nat.antidiagonal n) fun p => f p n) = Finset.sum (Finset.Nat.antidiagonal n) fun p => f p (p.fst + p.snd)
theorem
Finset.Nat.prod_antidiagonal_subst
{M : Type u_1}
[CommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → ℕ → M}
:
(Finset.prod (Finset.Nat.antidiagonal n) fun p => f p n) = Finset.prod (Finset.Nat.antidiagonal n) fun p => f p (p.fst + p.snd)
theorem
Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk
{M : Type u_3}
[AddCommMonoid M]
(f : ℕ × ℕ → M)
(n : ℕ)
:
(Finset.sum (Finset.Nat.antidiagonal n) fun ij => f ij) = Finset.sum (Finset.range (Nat.succ n)) fun k => f (k, n - k)
theorem
Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk
{M : Type u_3}
[CommMonoid M]
(f : ℕ × ℕ → M)
(n : ℕ)
:
(Finset.prod (Finset.Nat.antidiagonal n) fun ij => f ij) = Finset.prod (Finset.range (Nat.succ n)) fun k => f (k, n - k)
theorem
Finset.Nat.sum_antidiagonal_eq_sum_range_succ
{M : Type u_3}
[AddCommMonoid M]
(f : ℕ → ℕ → M)
(n : ℕ)
:
(Finset.sum (Finset.Nat.antidiagonal n) fun ij => f ij.fst ij.snd) = Finset.sum (Finset.range (Nat.succ n)) fun k => f k (n - k)
This lemma matches more generally than
Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk
when using rw ←
.
theorem
Finset.Nat.prod_antidiagonal_eq_prod_range_succ
{M : Type u_3}
[CommMonoid M]
(f : ℕ → ℕ → M)
(n : ℕ)
:
(Finset.prod (Finset.Nat.antidiagonal n) fun ij => f ij.fst ij.snd) = Finset.prod (Finset.range (Nat.succ n)) fun k => f k (n - k)
This lemma matches more generally than Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk
when
using rw ←
.