Documentation

Mathlib.Data.Finset.NatAntidiagonal

Antidiagonals in ℕ × ℕ as finsets #

This file defines the antidiagonals of ℕ × ℕ as finsets: the n-th antidiagonal is the finset of pairs (i, j) such that i + j = n. This is useful for polynomial multiplication and more generally for sums going from 0 to n.

Notes #

This refines files Data.List.NatAntidiagonal and Data.Multiset.NatAntidiagonal.

The antidiagonal of a natural number n is the finset of pairs (i, j) such that i + j = n.

Equations
Instances For
    @[simp]
    theorem Finset.Nat.mem_antidiagonal {n : } {x : × } :
    x Finset.Nat.antidiagonal n x.fst + x.snd = n

    A pair (i, j) is contained in the antidiagonal of n if and only if i + j = n.

    @[simp]

    The cardinality of the antidiagonal of n is n + 1.

    @[simp]

    The antidiagonal of 0 is the list [(0, 0)]

    @[simp]
    theorem Finset.Nat.map_swap_antidiagonal {n : } :
    Finset.map { toFun := Prod.swap, inj' := (_ : Function.Injective Prod.swap) } (Finset.Nat.antidiagonal n) = Finset.Nat.antidiagonal n

    See also Finset.map.map_prodComm_antidiagonal.

    theorem Finset.Nat.antidiagonal_congr {n : } {p : × } {q : × } (hp : p Finset.Nat.antidiagonal n) (hq : q Finset.Nat.antidiagonal n) :
    p = q p.fst = q.fst

    A point in the antidiagonal is determined by its first co-ordinate.

    theorem Finset.Nat.antidiagonal_subtype_ext {n : } {p : { x // x Finset.Nat.antidiagonal n }} {q : { x // x Finset.Nat.antidiagonal n }} (h : (p).fst = (q).fst) :
    p = q

    A point in the antidiagonal is determined by its first co-ordinate (subtype version of antidiagonal_congr). This lemma is used by the ext tactic.

    theorem Finset.Nat.antidiagonal.fst_le {n : } {kl : × } (hlk : kl Finset.Nat.antidiagonal n) :
    kl.fst n
    theorem Finset.Nat.antidiagonal.fst_lt {n : } {kl : × } (hlk : kl Finset.Nat.antidiagonal n) :
    kl.fst < n + 1
    theorem Finset.Nat.antidiagonal.snd_le {n : } {kl : × } (hlk : kl Finset.Nat.antidiagonal n) :
    kl.snd n
    theorem Finset.Nat.antidiagonal.snd_lt {n : } {kl : × } (hlk : kl Finset.Nat.antidiagonal n) :
    kl.snd < n + 1
    theorem Finset.Nat.filter_fst_eq_antidiagonal (n : ) (m : ) :
    Finset.filter (fun x => x.fst = m) (Finset.Nat.antidiagonal n) = if m n then {(m, n - m)} else
    theorem Finset.Nat.filter_snd_eq_antidiagonal (n : ) (m : ) :
    Finset.filter (fun x => x.snd = m) (Finset.Nat.antidiagonal n) = if m n then {(n - m, m)} else
    @[simp]
    theorem Finset.Nat.antidiagonal_filter_snd_le_of_le {n : } {k : } (h : k n) :
    Finset.filter (fun a => a.snd k) (Finset.Nat.antidiagonal n) = Finset.map (Function.Embedding.prodMap { toFun := fun x => x + (n - k), inj' := (_ : Function.Injective fun x => x + (n - k)) } (Function.Embedding.refl )) (Finset.Nat.antidiagonal k)
    @[simp]
    theorem Finset.Nat.antidiagonal_filter_fst_le_of_le {n : } {k : } (h : k n) :
    Finset.filter (fun a => a.fst k) (Finset.Nat.antidiagonal n) = Finset.map (Function.Embedding.prodMap (Function.Embedding.refl ) { toFun := fun x => x + (n - k), inj' := (_ : Function.Injective fun x => x + (n - k)) }) (Finset.Nat.antidiagonal k)
    @[simp]
    theorem Finset.Nat.antidiagonal_filter_le_fst_of_le {n : } {k : } (h : k n) :
    Finset.filter (fun a => k a.fst) (Finset.Nat.antidiagonal n) = Finset.map (Function.Embedding.prodMap { toFun := fun x => x + k, inj' := (_ : Function.Injective fun x => x + k) } (Function.Embedding.refl )) (Finset.Nat.antidiagonal (n - k))
    @[simp]
    theorem Finset.Nat.antidiagonal_filter_le_snd_of_le {n : } {k : } (h : k n) :
    Finset.filter (fun a => k a.snd) (Finset.Nat.antidiagonal n) = Finset.map (Function.Embedding.prodMap (Function.Embedding.refl ) { toFun := fun x => x + k, inj' := (_ : Function.Injective fun x => x + k) }) (Finset.Nat.antidiagonal (n - k))

    The disjoint union of antidiagonals Σ (n : ℕ), antidiagonal n is equivalent to the product ℕ × ℕ. This is such an equivalence, obtained by mapping (n, (k, l)) to (k, l).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem Finset.Nat.antidiagonalEquivFin_symm_apply_coe (n : ) :
      ∀ (x : Fin (n + 1)), ↑((Finset.Nat.antidiagonalEquivFin n).symm x) = (x, n - x)
      @[simp]

      The set antidiagonal n is equivalent to Fin (n+1), via the first projection. -

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For